The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Volume 46 , Issue 11
Showing 1-6 articles out of 6 articles from the selected issue
Review
  • Nivedita Chatterjee, Xiaowei Zhang
    2021 Volume 46 Issue 11 Pages 499-507
    Published: 2021
    Released: November 01, 2021
    JOURNAL FREE ACCESS FULL-TEXT HTML

    A significant barrier to include population variability in risk assessment is our incomplete understanding of inter-individual variability and the differential susceptibility to environmental exposures induced adverse outcomes. By combining genome editing tools with the population diversity model, this article intended to highlight a potential strategy to identify and characterize the inter-individual variability factors, the determinant gene anchoring to a particular phenotype. The goal could be achieved by integrating the perturbed CRISPR-based unbiased functional genomics screening, genome-wide or a focused subset of genes, in a population-based in vitro model system (such as the lymphoblastoid cell lines, LCL, available from HapMap and 1000 Genomes project). Then data can be translated to genetic variability and individual (or subpopulation) susceptibility by incorporating ethnicity and corresponding genome-wide association studies (GWAS) with functional genomics screening results. This approach can provide complementary data for next-generation risk assessment, in particular, for environmental stressors. The current paper outlined the previous work conducted with a population-based in vitro model system, perturbed CRISPR-based functional toxicogenomic screening of environmental chemicals, and finally, the potential strategies to combine these two platforms with their opportunities and challenges to achieve a mechanistic understanding of population variability.

Letter
  • Yuu Miyauchi, Madoka Sawai, Takumi Ishida, Hisao Kansui, Shinji Takech ...
    2021 Volume 46 Issue 11 Pages 509-514
    Published: 2021
    Released: November 01, 2021
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Dihydropyrazines (DHPs) are one of glycation products that are non-enzymatically generated in vivo and in food. We had previously revealed that 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), a methyl-substituted DHP, elicited redox imbalance and cytotoxicity in cultured cells. However, the molecular mechanisms underlying DHP-3-induced cytotoxicity remain unclear. To address this issue, we examined the involvement of the receptor for advanced glycation end products (RAGE) in DHP-3-induced cytotoxicity. To evaluate the role of RAGE, we prepared HeLa cells that constitutively expressed RAGE and its deletion mutant, which lacks the cytoplasmic domain (RAGEΔcyto), using an episomal vector. After transfection with the vector, cells were selected following incubation with multiple concentrations of hygromycin to remove non-transfected cells. The expression of RAGE and RAGEΔcyto in the cells was confirmed by immunoblotting. RAGE and RAGEΔcyto were apparently expressed in transfected cells; however, there were no significant differences in DHP-3-induced cytotoxicity between these cells and mock vector-transfected cells. These results suggested that DHP-3 elicits cytotoxicity in a RAGE-independent manner.

Original Article
  • Noriko Nakamura, Daniel T. Sloper
    2021 Volume 46 Issue 11 Pages 515-523
    Published: 2021
    Released: November 01, 2021
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    Rats are the standard model for male reproductive toxicity testing. Rat prostates are physiologically and anatomically different from those of humans. Drug and chemical toxicity testing would benefit from an in vitro model of human prostate cells. Recently, spheroids derived by three-dimensional culture of human cell lines have been used for assessing drug and chemical toxicity in vitro as they mimic in vivo environments more closely than two-dimensional culture. However, forming consistently sized, uniform spheroids is technically challenging for toxicity testing. The purpose of this study was to identify potential genetic markers for assessing prostatic toxicity in spheroids. We formed prostate spheroids using agarose-coated plates seeded with human primary prostate epithelial cells. Prostate spheroids were treated with either 17β-estradiol (E2) or testosterone (T) on days 2–7 of culture. Samples were harvested on culture day 7. qPCR was used to examine gene expression levels previously identified in rats with chronic inflammation exposed to estradiol benzoate, E2 and/or T. Changes in some gene expression levels were observed in the spheroids treated with E2 or T. We found that treatment with 1 nM E2 and/or 10 μM T significantly altered spheroid proliferation and viability, as well as the expression levels of genes including Nanog homeobox (NANOG), C-C motif chemokine ligand 2 (CCL2) and bone morphogenetic protein receptor type 2 (BMPR2). Further studies using biologically active molecules with prostatic toxicity are needed to verify the results and to determine whether gene expression changes in the spheroid are specific to E2 or T treatment.

Original Article
  • Tomonori Miura, Shotaro Uehara, Makiko Shimizu, Norie Murayama, Hirosh ...
    2021 Volume 46 Issue 11 Pages 525-530
    Published: 2021
    Released: November 01, 2021
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Coumarin is a naturally occurring component of food products but is of clinical interest for its potential hepatotoxicity in humans. In the current study, the pharmacokinetics of coumarin in humanized-liver mice after oral and intravenous administrations (30 mg/kg) were investigated for its transformations to metabolically active coumarin 3,4-epoxide (as estimated by the levels of o-hydroxyphenylacetic acid) and to excretable 7-hydroxycoumarin. After oral administration, control mice metabolized coumarin to o-hydroxyphenylacetic acid at roughly the same rate as that to 7-hydroxycoumarin (total of unconjugated and conjugated forms). In contrast, the in vivo biotransformation of coumarin to o-hydroxyphenylacetic acid by humanized-liver mice was around two orders of magnitude less than that to conjugated and unconjugated 7-hydroxycoumarin. After intravenous administrations of coumarin, differences were observed in the plasma concentrations of o-hydroxyphenylacetic acid between humanized-liver mice treated with furafylline (daily oral doses of 13 mg/kg for 3 days) and untreated humanized-liver mice. The mean values of the areas under the plasma concentration versus time curves and the maximum concentrations for o-hydroxyphenylacetic acid were significantly lower in the group treated with furafylline (45% and 57% of the untreated values, respectively). These results suggested that the metabolic activation of coumarin in humans was mediated mainly by P450 1A2, which was suppressed by furafylline, and that humanized-liver mice orally treated with furafylline might constitute an in vivo model for metabolically inactivated P450 1A2 in human hepatocytes transplanted into chimeric mice.

Letter
  • Takashi Yamada, Minoru Miura, Tomoko Kawamura, Kazuo Ushida, Kaoru Ino ...
    2021 Volume 46 Issue 11 Pages 531-538
    Published: 2021
    Released: November 01, 2021
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    Developmental and reproductive toxicity (DART) is an important endpoint, and databases (DBs) are essential for evaluating the risk of untested substances using alternative methods. We have constructed a reliable and transparent DART DB, which we named DART NIHS DB, using the publicly available datasets of DART studies of industrial chemicals conducted by Japanese government ministries in accordance with the corresponding OECD test guidelines (OECD TG421 and TG422). This DB is unique because its dataset chemicals have little overlap with those of ToxRefDB, which compiles large-scale DART data, and it is reliable because the included datasets were created after reviewing the individual study reports. In DART NIHS DB, 171 of 404 substances exhibited signs of DART, which occurred during fertility and early embryonic development (49 substances), organogenesis (59 substances), and the perinatal period (161 substances). When the lowest-observed-adverse-effect level (LOAEL) of DART was compared with that of repeated-dose toxicity (RDT), 15 substances (12%) had a lower LOAEL for DART than for RDT. Of these, five substances displayed significant DART at doses of ≤ 50 mg/kg bw/day. The chemical and toxicity information in this DB will be useful for the development of stage-specific adverse outcome pathways (AOPs) via integration with mechanistic information. The whole datasets of the DB can be implemented in read-across support tools such as the OECD QSAR Toolbox, which will further lead to future integrated approaches to testing and assessment based on AOPs.

Original Article
  • Junli Shao, Xin Li, Yu Luo, Heng Fang, Fangyan Lin, Guiwei Zhang, Furo ...
    2021 Volume 46 Issue 11 Pages 539-551
    Published: 2021
    Released: November 01, 2021
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    The exposure and harm of arsenic have attracted wide attention. Rice is an arsenic-rich crop. The purpose of this study was to learn the distribution of arsenic species and the pathological changes in tissues of mice exposed to arsenic-supplemented food simulating rice. Test groups of mice were orally exposed with prepared arsenic feeds supplemented with four arsenic species (arsenite iAsIII, arsenate iAsV, monomethylarsonate MMA, and dimethylarsinate DMA) at three doses (total As concentration: 0.91, 9.1 and 30 μg/g), which simulated the arsenic species ratio in rice. After 112 days, the concentrations of the arsenic species in the spleen, thymus, heart, skin and hair were detected, and histopathology of the spleen, heart and skin was observed. Each arsenic species was detected and their total concentration increased in a dose-dependent manner with a few exceptions. One interesting phenomenon is that ratio of the organic arsenic to inorganic arsenic also increased in a dose-dependent manner. For the other, the order of tissues from high to low arsenic concentration was the same in the medium- and high-dose groups. The histopathological sections of the spleen, heart and skin showed dose-dependent debilitating alterations in tissue architecture. Hyperplasia, hyaline degeneration and sclerosis of fibrous connective tissue occurred in the spleen. Myocardial cell atrophy and interstitial edema occurred in the heart. Hyperpigmentation, hyperkeratosis and atypia of basal cells occurred in the skin. In summary, the long-term intake of high arsenic rice has a health risk. Further studies are needed to assess it.

feedback
Top