The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Volume 49, Issue 2
Displaying 1-4 of 4 articles from this issue
Letter
  • Yoon Cho, Chul Min Park, Yong-Ju Heo, Hae-Bin Park, Min-Seok Kim
    2024 Volume 49 Issue 2 Pages 49-53
    Published: 2024
    Released on J-STAGE: February 01, 2024
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Drosophila melanogaster (D. melanogaster) is a promising model biological system. It has a short life cycle and can provide a substantial number of specimens suitable for comprehensive genetic and molecular analyses in a short time. In this study, we investigated the acute inhalation toxicity of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT) in a D. melanogaster model. During exposure, environmental conditions, mass median aerodynamic and geometric standard diameters were measured. After inhalation exposure, the survival rate, climbing ability, and bang sensitivity were measured on days 1, 2, and 7. Notably, the survival rate of flies decreased in an exposure concentration-dependent manner. Climbing ability and bang sensitivity were also altered in the MIT/CMIT group, compared with the negative control group. Overall, these results provide a reliable D. melanogaster model system for inhalation toxicity study.

Letter
  • Yuta Iijima, Ryohei Miki, Masatake Fujimura, Seiichi Oyadomari, Takash ...
    2024 Volume 49 Issue 2 Pages 55-60
    Published: 2024
    Released on J-STAGE: February 01, 2024
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Apoptosis is one of the hallmarks of MeHg-induced neuronal cell death; however, its molecular mechanism remains unclear. We previously reported that MeHg exposure induces neuron-specific ER stress in the mouse brain. Excessive ER stress contributes to apoptosis, and CHOP induction is considered to be one of the major mechanisms. CHOP is also increased by MeHg exposure in the mouse brain, suggesting that it correlates with increased apoptosis. In this study, to clarify whether CHOP mediates MeHg-induced apoptosis, we examined the effect of CHOP deletion on MeHg exposure in CHOP-knockout mice. Our data showed that CHOP deletion had no effect on MeHg exposure-induced weight loss or hindlimb impairment in mice, nor did it increase apoptosis or inhibit neuronal cell loss. Hence, CHOP plays little role in MeHg toxicity, and other apoptotic pathways coupled with ER stress may be involved in MeHg-induced cell death.

Letter
  • Maori Kono, Masayuki Takaishi, Tomoaki Okuda, Masashi Fujihara, Seisuk ...
    2024 Volume 49 Issue 2 Pages 61-68
    Published: 2024
    Released on J-STAGE: February 01, 2024
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    Particulate matter (PM) is among the major air pollutants suspended in the atmosphere. PM2.5 has a particle size of 2.5 µm; it is known to cause inflammation, especially in the respiratory tract and skin. Since the skin acts a primary barrier against harmful environmental substances that may enter the body, it is highly exposed to PM2.5 present in the environment. However, the adverse health effects of PM2.5 exposure on human skin have not been accurately examined due to the lack of a system that exposes human epidermal tissue to the actual environmental concentration of PM2.5. In this study, we developed an air–liquid interface exposure system for exposing cultured human 3D epidermis and cornea to PM2.5 collected through cyclonic separation. PM2.5 suspension was nebulized in an acrylic chamber, and the resulting mist was pumped through a diffusion dryer into a glass exposure chamber. A particle counter was connected to the exposure chamber to continuously measure the spatial mass concentration of PM. Human 3D epidermis was cultured in the exposure chamber. Exposure of the human 3D epidermis to PM aerosol increased interleukin-8 release into the media around 50 µg/m3. Mass concentrations above 100 µg/m3 caused cell death. Furthermore, a human corneal model showed similar responses against PM2.5 exposure as 3D epidermis. The air–liquid interface exposure system developed in this study is considered useful for evaluating the health effects induced by environmental PM2.5 and can be used as an alternative to experiments involving actual human or animals.

Original Article
  • Go Kitahara, Kazuma Higashisaka, Yurina Nakamoto, Rena Yamamoto, Wakak ...
    2024 Volume 49 Issue 2 Pages 69-77
    Published: 2024
    Released on J-STAGE: February 01, 2024
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    Placental dysfunction can disrupt pregnancy. However, few studies have assessed the effects of chemical-induced toxicity on placental function. Here, we examined the effects of valproic acid (VPA) as a model chemical on production of hormones and on glucose uptake in human choriocarcinoma cell line BeWo. Cells were treated with forskolin to differentiate into syncytiotrophoblasts, which were then treated with VPA for 72 hr. Real-time RT-PCR analysis showed that VPA significantly increased the mRNA expression of chorionic gonadotropin β (CGB), a hormone that is produced by the placenta in the first trimester of pregnancy, relative to that in the forskolin-only group. It also suppressed the increase in intracellular glucose uptake and GLUT1 level observed in the forskolin-only group. RNA-seq analysis and pathway database analysis revealed that VPA consistently decreased the level of HIF-1α protein and expression of its downstream target genes HK2 and ADM in the hypoxia pathway. Cobalt chloride, a HIF-1α inducer, inhibited CGB upregulation in VPA-treated cells and rescued VPA-induced suppression of glucose uptake and GLUT1 level. Thus, HIF-1α-mediated elevation of CGB expression and suppression of glucose uptake by VPA is a novel mechanism of placental dysfunction.

feedback
Top