Root exudates from Chinese celery (Apium graveolens) and Chinese cabbage (pak choi, Brassica chinensis) plants treated by prometryn, an herbicide, were qualitatively and quantitatively investigated and compared under hydroponic cultivation. Prometryn and its metabolites released into the nutrient solution were analyzed by ultra-performance liquid chromatograph coupled with orbitrap mass spectrometer to investigate whether this xylem-mobile herbicide is exuded from the roots. The results showed that celery and pak choi had different root exudation profiles. Celery metabolized prometryn to prometryn sulfoxide and released both compounds from the roots. In contrast, pak choi barely metabolized or actively released prometryn from the roots. The concentration of prometryn sulfoxide released from celery after 96 hr was 21 µg/L, which was nearly one-third that of released prometryn. Our results indicate that the root exudation and translocation of xylem-mobile herbicides could be significant in plants and are highly species dependent compared with phloem-mobile herbicides.
To evaluate the bioaccumulation potential of chemicals in fish, a molecular-size descriptor, Dmax aver, has been used as a weight of evidence under the EU REACH. The Dmax aver value, however, is estimated on the basis of 3-D structures of possible stable conformers in a vacuum using OASIS software that requires expertise upon parameter input. We developed a method to calculate the 3-D conformers in water, which is more suitable for bioaccumulation potential evaluation in an aquatic environment, by introducing MD simulation. By examining the relationship of the calculated molecular size of 1665 chemicals with their reported BCF values, we found that 17.1 Å of Dmax aver or 15.6 Å of Dmax min was a threshold of molecular size in water to predict the low bioaccumulation (i.e., BCF<5000) of a chemical. Setting this threshold as a new standard would reduce the number of animal tests without compromising the quality of safety evaluation.
We synthesized the proposed structure of an antifungal compound detected in the culture broth of the edible mushroom Hypsizygus marmoreus. Using the Evans aldol and Abiko–Masamune aldol reactions as the key steps, we synthesized all of the stereoisomers of the compound with high stereoselectivity. The GC retention times and the fragmentation patterns in the mass spectra of the synthesized isomers did not match those of the natural product. Therefore, this result may imply that it is necessary to reisolate the natural product and reconsider its structure. All of the synthesized isomers were found to exhibit antifungal activity against the phytopathogenic fungus Alternaria brassicicola. Due to their simple structures, the obtained isomers could be lead compounds for new pesticides.
We quantitatively evaluated the cumulative ecological risks from multiple pesticides used in paddy fields in Japan. Moreover, we visualized the temporal and regional variability of those risks for 1990–2010. Considering the region-specific parameters of environmental conditions, region-specific predicted environmental concentrations were estimated at 350 river-flow monitoring sites in Japan. Then the multi-substance potentially affected fraction (msPAF) was calculated as a risk index of multiple pesticides by using the computation tool NIAES-CERAP. The median msPAF values for insecticides and herbicides decreased by 92.4% and 53.1%, respectively, from 1990 to 2010. This substantial reduction in ecological risk was attributed to the development of low-risk pesticides by manufacturers, the efforts of farmers in risk reduction, and tighter regulation by the Japanese government. In particular, the substantial reduction of the ecological risk from insecticides was largely due to the decrease in the use of organophosphorus insecticides.
Over ten-year routine inspection results on organochlorine pesticide (OCP) residue were summarized, OCPs residues, including BHC isomers (α, β, γ, and δ-BHC), DDT analogs (p,p′-DDD, p,p′-DDE, o,p′-DDT, and p,p′-DDT), and pentachloronitrobenzene (PCNB) and its metabolites (pentachloroaniline and methyl pentachlorophenyl sulfide (MPCPS)), in 1,665 samples for 37 types of Chinese herbal medicine (CHM) using the QuEChERS method coupled with the GC-ECD. Based on the maximal residue levels for OCPs set by Asian pharmacopeias, PCNB contamination in Ginseng radix as well as the total DDT and PCNB contamination in Panacis quinquefolii radix are of concern. OCP residues in different parts of Panax ginseng were also compared. The total BHC residue in leaf and fibrous root, as well as the total DDT and PCNB residue in all parts, exceeded MRL of 0.1 mg/kg. Overall, this study provided meaningful results about OCP residue in CHM for pharmaceutical industries and consumers.
The purpose of this study is to propose the use of OxiTop® for measuring biochemical oxygen demand (BOD) under the Japanese Chemical Substances Control Law in order to properly evaluate chemical fate in a real environment. In our previous study, the biodegradation of test chemicals was accelerated by both adsorbing the chemical to silica gel with chloroform and increasing the medium volume from 300 to 3900 mL in the OECD 301F test using a coulometer. However, the biodegradability of these chemicals could not be evaluated based on BOD due to chloroform residue in the silica gel, or the medium volume could not be increased further due to the oven size of the coulometer. In this study, we established an evaluation system using OxiTop® based on BOD by increasing the medium volume to 9000 mL. Based on triplicate testing, increasing the medium volume accelerated biodegradation and decreased variation in BOD.
Strigolactones (SLs) are carotenoid-derived plant hormones involved in several growth and developmental processes. Also, SLs are allelochemicals that induce the seed germination of root parasitic plants and the hyphal branching of arbuscular mycorrhizal fungi. In this study, to identify novel lead chemicals that inhibit SL biosynthesis, we evaluated the effect of agrochemicals on SL biosynthesis. We found that the diacylhydrazine insect growth regulator, chromafenozide, reduced the endogenous level of 4-deoxyorobanchol (4DO), a major SL in rice. Furthermore, treatment with the same class of insect growth regulator, methoxyfenozide, also resulted in the reduction of 4DO levels in rice root exudates. These results suggest that chromafenozide and methoxyfenozide are novel lead inhibitors of SL biosynthesis.