The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.
Electrical contacts are separated at constant speed and break arcs are generated in nitrogen or air in a 200V-450VDC/10A resistive circuit. The break arcs are extinguished by magnetic blow-out. Arc duration for the silver and copper contact pairs is investigated for each supply voltage. Following results are shown. The arc duration for Cu contacts in nitrogen is the shortest. For Cu contacts, the arc dwell time in air was considerably longer than that of nitrogen. For Ag contacts, the arc duration in nitrogen was almost the same as that in air.
An equivalent circuit of Yee's cells is proposed for mixed electromagnetic and circuit simulations. Using the equivalent circuit, a mixed electromagnetic and circuit simulator can be developed, in which the electromagnetic field and circuit responses are simultaneously analyzed. Representing the electromagnetic system as a circuit, active and passive device models in a circuit simulator can be used for the mixed simulations without any modifications. Hence, the propose method is very useful for designing various electronic systems. To evaluate the mixed simulations with the equivalent circuit, two implementations with shared or distributed memory computer system are presented. In the numerical examples, we evaluate the performances of the prototype simulators to demonstrate the effectiveness.
Wireless power transfer (WPT) via coupled magnetic resonances has more than ten years history of development. However, it appears frequency splitting phenomenon in the over-coupled region, thus, the output power of the two-coil WPT system achieves the maximum output power at the two splitting angular frequencies and not at the natural resonant angular frequency. By investigating the relationship between the impedances of the transmitter side and receiver side, we found that WPT system is a power superposition system, and the reasons were given to explaining how to appear the frequency splitting and impact on the maximum output power of the system in details. First, the circuit model was established and transfer characteristics of the two-coil WPT system were studied by utilizing circuit theories. Second, the mechanism of the power superposition of the WPT system was carefully researched. Third, the relationship between the impedances of the transmitter side and receiver side was obtained by investigating the impedance characteristics of a two-coil WPT system, and also the impact factors of the maximum output power of the system were obtained by using a power superposition mechanism. Finally, the experimental circuit was designed and experimental results are well consistent with the theoretical analysis.