This paper presents on-wafer noise figure (NF) de-embedding method of differential low noise amplifier (LNA). The characterization of NF was set up and referred as multi-stage network. The Friis law was applied to improve from the noise contributions from the subsequent stages. The correlated differential NF is accurately obtained after de-embedding the noise contribution from the interconnections and external components. Details of equations and measurement procedure are reported in this work. A 2.4GHz differential LNA was tested to demonstrate the feasibility of measurement and showed precise NF compared with other methods. The result shows an NF of 0.57dB achieved using de-embedding method and 1.06dB obtained without the de-embedding method. This is an improvement of 0.49dB of NF measurement.
We have designed gate arrays using low-temperature poly-Si thin-film transistors and confirmed the correct operations. Various kinds of logic gates are beforehand prepared, contact holes are later bored, and mutual wiring is formed between the logic gates on demand. A half adder, two-bit decoder, and flip flop are composed as examples. The static behaviors are evaluated, and it is confirmed that the correct waveforms are output. The dynamic behaviors are also evaluated, and it is concluded that the dynamic behaviors of the gate array are less deteriorated than that of the independent circuit.