IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Volume E104.C, Issue 7
Displaying 1-13 of 13 articles from this issue
Special Section on Solid-State Circuit Design — Architecture, Circuit, Device and Design Methodology
  • Makoto NAGATA
    2021 Volume E104.C Issue 7 Pages 261
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    JOURNAL FREE ACCESS
    Download PDF (97K)
  • Tsutomu MATSUMOTO, Makoto IKEDA, Makoto NAGATA, Yasuyoshi UEMURA
    Article type: INVITED PAPER
    2021 Volume E104.C Issue 7 Pages 262-271
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: January 28, 2021
    JOURNAL FREE ACCESS

    The Internet of Things (IoT) implicates an infrastructure that creates new value by connecting everything with communication networks, and its construction is rapidly progressing in anticipation of its great potential. Enhancing the security of IoT is an essential requirement for supporting IoT. For ensuring IoT security, it is desirable to create a situation that even a terminal component device with many restrictions in computing power and energy capacity can easily verify other devices and data and communicate securely by the use of public key cryptography. To concretely achieve the big goal of penetrating public key cryptographic technology to most IoT end devices, we elaborated the secure cryptographic unit (SCU) built in a low-end microcontroller chip. The SCU comprises a hardware cryptographic engine and a built-in access controlling functionality consisting of a software gate and hardware gate. This paper describes the outline of our SCU construction technology's research and development and prospects.

    Download PDF (2360K)
  • Toshishige SHIMAMURA, Hiroki MORIMURA
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 272-279
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: January 13, 2021
    JOURNAL RESTRICTED ACCESS

    A new threshold circuit technique is proposed for a vibration sensing circuit that operates at a nanowatt power level. The sensing circuits that use sample-and-hold require a clock signal, and they consume power to generate a signal. In the use of a Schmitt trigger circuit that does not use a clock signal, a sink current flows when thresholding the analog signal output. The requirements for millimeter-sized wireless sensor nodes are an average power on the order of a nanowatt and a signal transition time of less than 1 ms. To meet these requirements, our circuit limits the sink current with a nanoampere-level current source. The chattering caused by current limiting is suppressed by feeding back the change in output voltage to the limiting current. The increase in the signal transition time that is caused by current limiting is reduced by accelerating the discharge of the load capacitance. For a test chip fabricated in the 0.35-µm CMOS process, the proposed threshold circuits operate without chattering and the average powers are 0.7-3 nW. The signal transition times are estimated in a circuit simulation to be 65-97 µs. The proposed circuit has 1/150th the power-delay product with no time interval of the sensing operation under the condition that the time interval is 1s. These results indicate that, the proposed threshold circuits are suitable for vibration sensing in millimeter-sized wireless sensor nodes.

    Download PDF (1585K)
  • Xi FU, Yun WANG, Zheng LI, Atsushi SHIRANE, Kenichi OKADA
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 280-288
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: January 08, 2021
    JOURNAL RESTRICTED ACCESS

    There are enlarged requirements of millimeter-wave beamforming phased-array transceivers and high-order modulation multi-input multi-output (MIMO) transceivers. High-performance integrated RF switches are regarded as one of the most critical components for those transceivers to support signal channel distribution and path redundancy. This paper introduces a CMOS high-isolation and low-loss RF switch with a novel switched parallel LC resonance network. The proposed single-pole double-throw (SPDT) RF switch realizes 68dB port isolation and 1.0dB insertion loss with an active area of 0.034mm2. The SPDT RF switch is composed of two series-shunt transistor pairs with body-floating technology and a switched parallel LC network. The network uses a turned-off series transistor to resonate out off-capacitance Coff. The measured output third-order intercept (OIP3) is higher than 21dBm. The proposed SPDT RF switch maintains return losses of all working ports less than 10dB from 8GHz to 20GHz. The high-performance SPDT RF switch is fabricated in standard 65-nm CMOS technology.

    Download PDF (1475K)
  • Zheng SUN, Hanli LIU, Dingxin XU, Hongye HUANG, Bangan LIU, Zheng LI, ...
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 289-299
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: January 08, 2021
    JOURNAL RESTRICTED ACCESS

    This paper presents a high jitter performance injection-locked clock multiplier (ILCM) using an ultra-low power (ULP) voltage-controlled oscillator (VCO) for IoT application in 65-nm CMOS. The proposed transformer-based VCO achieves low flicker noise corner and sub-100µW power consumption. Double cross-coupled NMOS transistors sharing the same current provide high transconductance. The network using high-Q factor transformer (TF) provides a large tank impedance to minimize the current requirement. Thanks to the low current bias with a small conduction angle in the ULP VCO design, the proposed TF-based VCO's flicker noise can be suppressed, and a good PN can be achieved in flicker region (1/f3) with sub-100µW power consumption. Thus, a high figure-of-merit (FoM) can be obtained at both 100kHz and 1MHz without additional inductor. The proposed VCO achieves phase noise of -94.5/-115.3dBc/Hz at 100kHz/1MHz frequency offset with a 97µW power consumption, which corresponds to a -193/-194dBc/Hz VCO FoM at 2.62GHz oscillation frequency. The measurement results show that the 1/f3 corner is below 60kHz over the tuning range from 2.57GHz to 3.40GHz. Thanks to the proposed low power VCO, the total ILCM achieves 78 fs RMS jitter while using a high reference clock. A 960 fs RMS jitter can be achieved with a 40MHz common reference and 107µW corresponding power.

    Download PDF (2052K)
  • Ruilin ZHANG, Xingyu WANG, Hirofumi SHINOHARA
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 300-308
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: January 28, 2021
    JOURNAL FREE ACCESS

    In this paper, we describe a post-processing technique having high extraction efficiency (ExE) for de-biasing and de-correlating a random bitstream generated by true random number generators (TRNGs). This research is based on the N-bit von Neumann (VN_N) post-processing method. It improves the ExE of the original von Neumann method close to the Shannon entropy bound by a large N value. However, as the N value increases, the mapping table complexity increases exponentially (2N), which makes VN_N unsuitable for low-power TRNGs. To overcome this problem, at the algorithm level, we propose a waiting strategy to achieve high ExE with a small N value. At the architectural level, a Hamming weight mapping-based hierarchical structure is used to reconstruct the large mapping table using smaller tables. The hierarchical structure also decreases the correlation factor in the raw bitstream. To develop a technique with high ExE and low cost, we designed and fabricated an 8-bit von Neumann with waiting strategy (VN_8W) in a 130-nm CMOS. The maximum ExE of VN_8W is 62.21%, which is 2.49 times larger than the ExE of the original von Neumann. NIST SP 800-22 randomness test results proved the de-biasing and de-correlation abilities of VN_8W. As compared with the state-of-the-art optimized 7-element iterated von Neumann, VN_8W achieved more than 20% energy reduction with higher ExE. At 0.45V and 1MHz, VN_8W achieved the minimum energy of 0.18pJ/bit, which was suitable for sub-pJ low energy TRNGs.

    Download PDF (3329K)
  • Yuta UKON, Shimpei SATO, Atsushi TAKAHASHI
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 309-318
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: December 21, 2020
    JOURNAL RESTRICTED ACCESS

    Advanced information-processing services such as computer vision require a high-performance digital circuit to perform high-load processing at high speed. To achieve high-speed processing, several image-processing applications use an approximate computing technique to reduce idle time of the circuit. However, it is difficult to design the high-speed image-processing circuit while controlling the error rate so as not to degrade service quality, and this technique is used for only a few applications. In this paper, we propose a method that achieves high-speed processing effectively in which processing time for each task is changed by roughly detecting its completion. Using this method, a high-speed processing circuit with a low error rate can be designed. The error rate is controllable, and a circuit design method to minimize the error rate is also presented in this paper. To confirm the effectiveness of our proposal, a ripple-carry adder (RCA), 2-dimensional discrete cosine transform (2D-DCT) circuit, and histogram of oriented gradients (HOG) feature calculation circuit are evaluated. Effective clock periods of these circuits obtained by our method with around 1% error rate are improved about 64%, 6%, and 12%, respectively, compared with circuits without error. Furthermore, the impact of the miscalculation on a video monitoring service using an object detection application is investigated. As a result, more than 99% of detection points required to be obtained are detected, and it is confirmed the miscalculation hardly degrades the service quality.

    Download PDF (2119K)
  • Thi Diem TRAN, Yasuhiko NAKASHIMA
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 319-329
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: December 18, 2020
    JOURNAL FREE ACCESS

    Convolutional neural networks (CNNs) have dominated a range of applications, from advanced manufacturing to autonomous cars. For energy cost-efficiency, developing low-power hardware for CNNs is a research trend. Due to the large input size, the first few convolutional layers generally consume most latency and hardware resources on hardware design. To address these challenges, this paper proposes an innovative architecture named SLIT to extract feature maps and reconstruct the first few layers on CNNs. In this reconstruction approach, total multiply-accumulate operations are eliminated on the first layers. We evaluate new topology with MNIST, CIFAR, SVHN, and ImageNet datasets on image classification application. Latency and hardware resources of the inference step are evaluated on the chip ZC7Z020-1CLG484C FPGA with Lenet-5 and VGG schemes. On the Lenet-5 scheme, our architecture reduces 39% of latency and 70% of hardware resources with a 0.456 W power consumption compared to previous works. Even though the VGG models perform with a 10% reduction in hardware resources and latency, we hope our overall results will potentially give a new impetus for future studies to reach a higher optimization on hardware design. Notably, the SLIT architecture efficiently merges with most popular CNNs at a slightly sacrificing accuracy of a factor of 0.27% on MNIST, ranging from 0.5% to 1.5% on CIFAR, approximately 2.2% on ImageNet, and remaining the same on SVHN databases.

    Download PDF (2144K)
  • Akira KITAYAMA, Goichi ONO, Tadashi KISHIMOTO, Hiroaki ITO, Naohiro KO ...
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 330-337
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: December 22, 2020
    JOURNAL FREE ACCESS

    Reducing power consumption is crucial for edge devices using convolutional neural network (CNN). The zero-skipping approach for CNNs is a processing technique widely known for its relatively low power consumption and high speed. This approach stops multiplication and accumulation (MAC) when the multiplication results of the input data and weight are zero. However, this technique requires large logic circuits with around 5% overhead, and the average rate of MAC stopping is approximately 30%. In this paper, we propose a precise zero-skipping method that uses input data and simple logic circuits to stop multipliers and accumulators precisely. We also propose an active data-skipping method to further reduce power consumption by slightly degrading recognition accuracy. In this method, each multiplier and accumulator are stopped by using small values (e.g., 1, 2) as input. We implemented single shot multi-box detector 500 (SSD500) network model on a Xilinx ZU9 and applied our proposed techniques. We verified that operations were stopped at a rate of 49.1%, recognition accuracy was degraded by 0.29%, power consumption was reduced from 9.2 to 4.4 W (-52.3%), and circuit overhead was reduced from 5.1 to 2.7% (-45.9%). The proposed techniques were determined to be effective for lowering the power consumption of CNN-based edge devices such as FPGA.

    Download PDF (3429K)
  • Yoshinori ONO, Kimiyoshi USAMI
    Article type: PAPER
    2021 Volume E104.C Issue 7 Pages 338-349
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: January 06, 2021
    JOURNAL RESTRICTED ACCESS

    A non-volatile memory (NVM) employing MTJ has a lot of strong points such as read/write performance, best endurance and operating-voltage compatibility with standard CMOS. However, it consumes a lot of energy when writing the data. This becomes an obstacle when applying to battery-operated mobile devices. To solve this problem, we propose an approach to augment the capability of the precision scaling technique for the write operation in NVM. Precision scaling is an approximate computing technique to reduce the bit width of data (i.e. precision) for energy reduction. When writing image data to NVM with the precision scaling, the write energy and the image quality are changed according to the write time and the target bit range. We propose an energy-efficient approximate storing scheme for non-volatile flip-flops and a magnetic random-access memory (MRAM) that allows us to write the data by optimizing the bit positions to split the data and the write time for each bit range. By using the statistical model, we obtained optimal values for the write time and the targeted bit range under the trade-off between the write energy reduction and image quality degradation. Simulation results have demonstrated that by using these optimal values the write energy can be reduced up to 50% while maintaining the acceptable image quality. We also investigated the relationship between the input images and the output image quality when using this approach in detail. In addition, we evaluated the energy benefits when applying our approach to nine types of image processing including linear filters and edge detectors. Results showed that the write energy is reduced by further 12.5% at the maximum.

    Download PDF (3461K)
  • Kyongsu LEE, Jae-Yoon SIM
    Article type: BRIEF PAPER
    2021 Volume E104.C Issue 7 Pages 350-354
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: December 18, 2020
    JOURNAL RESTRICTED ACCESS

    This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.

    Download PDF (2760K)
Regular Section
  • Daiki FUJII, Masaya TAMURA
    Article type: PAPER
    Subject area: Microwaves, Millimeter-Waves
    2021 Volume E104.C Issue 7 Pages 355-362
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: December 04, 2020
    JOURNAL RESTRICTED ACCESS

    This study proposes a design method for a rectifier circuit that can be rapidly charged by focusing on the design-load value of the circuit and the load fluctuation of a storage capacitor. The design-load value is suitable for rapidly charging the capacitor. It can be obtained at the lowest reflection condition and estimated according to the circuit design. This is a conventional method for designing the rectifier circuit using the optimum load. First, we designed rectifier circuits for the following three cases. The first circuit design uses a load set to 10 kΩ. The second design uses a load of 30 kΩ that is larger than the optimum load. The third design utilizes a load of 3 kΩ. Then, we measure the charging time to design the capacitor on each circuit. Consequently, the results show that the charge time could be shortened by employing the design-load value lower than that used in the conventional design. Finally, we discuss herein whether this design method can be applied regardless of the rectifier circuit topology.

    Download PDF (850K)
  • Kazuki YOSHIDA, Kentaro SAITO, Keito SOGAI, Masanori MIURA, Kensaku KA ...
    Article type: PAPER
    Subject area: Electronic Materials
    2021 Volume E104.C Issue 7 Pages 363-369
    Published: July 01, 2021
    Released on J-STAGE: July 01, 2021
    Advance online publication: November 26, 2020
    JOURNAL RESTRICTED ACCESS

    Nano crystalline zinc oxide (ZnO) is deposited by room temperature atomic layer deposition (RT-ALD) using dimethylzinc and a plasma excited humidified Ar without thermal treatments. The TEM observation indicated that the deposited ZnO films were crystallized with grain sizes of ∼20 nm on Si in the course of the RT-ALD process. The crystalline ZnO exhibited semiconducting characteristics in a thin film transistor, where the field-effect mobility was recorded at 1.29×10-3cm2/V·s. It is confirmed that the RT deposited ZnO film has an anticorrosion to hot water. The water vapor transmission rate of 8.4×10-3g·m-2·day-1 was measured from a 20 nm thick ZnO capped 40 nm thick Al2O3 on a polyethylene naphthalate film. In this paper, we discuss the crystallization of ZnO in the RT ALD process and its applicability to flexible electronics.

    Download PDF (2450K)
feedback
Top