Electromagnetic relays were developed in the first half of 19th century. At the beginning, they have been mainly used for telecommunication systems, afterwards, their uses were expanded, they have been applied to various systems such as industry products, traffic control equipment, household appliances and so on. During this time, international standardization on them became active, Japan took part in the auxiliary relay committee in the International Electrotechnical Commission (IEC). Recently, Japan is playing an important role in the committee activities. In this paper, transition and the present circumstance on technical trends of the electromagnetic relays and their activities on international standardization are described, talking about some future prospects.
Under the condition of inadequate torque management, contact failure could occur in the interconnecting connector. Contact failure reduces the local immunity and degrades the electromagnetic properties of the equipment. It has been shown in previous reports that connector contact failure causes the parasitic inductance and radiated electromagnetic noise to increase. However, there is not enough discussion about the effects of connector torque fluctuation on the surrounding electromagnetic environment. Thus, in this study, the effects of a changing connector torque value on the circuit response and near field at the contact boundary were investigated. Based on these results, we discuss the influence of torque fluctuation on the electromagnetic environment surrounding the connector.
When AgSnO2 contacts were operated to break an inductive DC load current of 14V-12A, 20V-7A or 20V-17A at a contact opening speed of 10mm/sec or slower, application of an external magnetic field resulted in reductions in break arc durations even without magnetic blowing. Simple estimation of Lorentz force to be applied onto arc column revealed that a certain minimum magnitude of Lorentz force seems to be required for initiating arc blowing. Certain relationships between the Lorentz force magnitude and the timing of metallic-to-gaseous phase transition were also found to exist.
With the advantages of higher blocking voltage, higher operation temperature, fast-switching characteristics, and lower switching losses, the silicon carbide (SiC) MOSFET has attracted more attentions and become an available replacement of traditional silicon (Si) power semiconductor in applications. Despite of all the merits above, electromagnetic interference (EMI) issues will be induced consequently by the ultra-fast switching transitions of the SiC MOSFET. To quickly and precisely assess the switching behaviors of the SiC MOSFET for EMI investigation, an analytical model is proposed. This model has comprehensively considered most of the key factors, including parasitic inductances, non-linearity of the junction capacitors, negative feedback effect of Ls and Cgd shared by the power and the gate stage loops, non-linearity of the trans-conductance, and skin effect during voltage and current ringing stages, which will considerably affect the switching performance of the SiC MOSFET. Additionally, a finite-state machine (FSM) is especially utilized so as to analytically and intuitively describe the switching behaviors of the SiC MOSFET via Stateflow. Based on double pulse test (DPT), the effectiveness and correctness of the proposed model are validated through the comparison between the calculated and the measured waveforms during switching transitions. Besides, the model can appropriately depict the spectrum of the drain-source voltage of the MOSFET and is suitable for EMI investigation in applying of SiC devices.