Fluidic micro electro mechanical system (fluidic MEMS) devices, composed of a micro pump, mixer, valve, reactor, sensor and an electric circuit on a chip, have been widely applied in biotechnology and medical analyses. This study describes the design and fabrication of a fluidic MEMS device that can separate living leukocyte cells from a single droplet of blood (< 1μl). The chip was constructed from two substrate materials sandwiched together to form a gap with an upper hydrophilic (glass) surface and a lower hydrophobic (acrylic resin) surface. A blood sample was flowed into the gap (40μm) between the two substrates driven by the difference in surface tension of the two materials. Leukocyte cells were left adhered to the lower hydrophobic surface, whereas red corpuscles flowed toward the exit of the fluidic MEMS device. The separation rate of the red corpuscles has been achieved to 91 ± 9% in a unit area of 0.1 mm
2. Further, the change in an area of a living leukocyte cell separated in the chip, was quantitatively analyzed. This study proposes a method for separating and measuring living cells in a fluidic MEMS device.
View full abstract