Uirusu
Online ISSN : 1884-3433
Print ISSN : 0042-6857
ISSN-L : 0042-6857
Volume 64, Issue 2
Displaying 1-10 of 10 articles from this issue
Reviews
  • Masafumi SAKATA, Yoshio MORI
    2014 Volume 64 Issue 2 Pages 137-146
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Rubella virus (RV), an infectious agent of rubella, is the sole member of the genus Rubivirus in the family of Togaviridae. RV has a positive-stranded sense RNA as a genome. A natural host of RV is limited to human, and rubella is considered to be a childhood disease in general. When woman is infected with RV during early pregnancy, her fetus may develop severe birth defects known as congenital rubella syndrome. In this review, the RV life cycle from the virus entry to budding is illustrated in comparison with those of member viruses of the genus alphavirus in the same family. The multiple functions of the RV capsid protein are also introduced.
    Download PDF (1195K)
  • Takashi SERA
    2014 Volume 64 Issue 2 Pages 147-154
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Various DNA viruses are known to cause severe infectious diseases in both plants and mammals, including humans. For many of these infectious diseases, we have yet to find an effective prevention or treatment. Therefore, new methodologies for the prevention of virus infections in both agricultural crops and humans have been vigorously sought for a long time. One attractive approach to the prevention is inhibition of virus replication. We first inhibited virus replication by blocking binding of a viral replication protein, which initiates virus replication, to its replication origin, with using an artificial DNA-binding protein. We demonstrated that this new methodology was very effective in plants and mammalian cells: especially, we created transgenic plants that were immune to a geminivirus. We also developed novel protein-based antiviral drugs by fusing a cell-penetrating peptide to an artificial DNA-binding protein. Furthermore, we successfully generated a more effective protein-based antiviral, which was one hundred thousand times more active than the antiviral chemical drug Cidofovia, by alternatively fusing an DNA-cleaving enzyme to an artificial DNA-binding protein. Since this artificial protein has little cytotoxicity, it is expected that it will be used as a new antiviral drug.
    Download PDF (3331K)
  • Akira ONO
    2014 Volume 64 Issue 2 Pages 155-164
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Location of virus assembly in infected cells has major influences on efficiencies of virus assembly and release and on post-assembly processes including cell-to-cell transmission. Therefore, for better understanding of virus spread and for developing new antiviral strategies, it is important to elucidate mechanisms by which the subcellular site of virus particle assembly is determined. Retrovirus particle assembly is driven by viral structural protein Gag. In the case of HIV-1, Gag binds to the plasma membrane (PM) via the N-terminal MA domain and forms nascent particles at this location. Recent studies reveled that PM-specific phospholipid PI(4,5)P2 plays an important role in directing Gag to the PM through its interaction with MA. In this review, I will summarize our current understanding of relationships between retroviral MA domains and phospholipids in cellular membranes and discuss possible mechanisms by which lipids and other factors regulate membrane binding and subcellular localization of retroviral Gag proteins.
    Download PDF (1149K)
  • Tomoaki OGINO
    2014 Volume 64 Issue 2 Pages 165-178
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Non-segmented negative strand RNA viruses belonging to the Mononegavirales order possess RNA-dependent RNA polymerase L proteins within viral particles. The L protein is a multifunctional enzyme catalyzing viral RNA synthesis and processing (i.e., mRNA capping, cap methylation, and polyadenylation). Using vesicular stomatitis virus (VSV) as a prototypic model virus, we have shown that the L protein catalyzes the unconventional mRNA capping reaction, which is strikingly different from the eukaryotic reaction. Furthermore, co-transcriptional pre-mRNA capping with the VSV L protein was found to be required for accurate stop?start transcription to synthesize full-length mRNAs in vitro and virus propagation in host cells. This article provides a review of historical and present studies leading to the elucidation of the molecular mechanism of VSV mRNA capping.
    Download PDF (3517K)
Special Issue: Virology of double strand RNA viruses
  • Satoshi KOMOTO, Koki TANIGUCHI
    2014 Volume 64 Issue 2 Pages 179-190
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Rotavirus, a member of the family Reoviridae, was identified as the leading etiological agent of severe gastroenteritis in infants and young children in 1973. The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. During the last 40 years, a large amount of basic research on rotavirus structure, genome, antigen, replication, pathogenesis, epidemiology, immune responses, and evolution has been accumulated. This article reviews the fundamental aspects of rotavirology including recent important achievements in research.
    Download PDF (2518K)
  • Takeshi KOBAYASHI
    2014 Volume 64 Issue 2 Pages 191-202
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Members of the genus Orthoreovirus in the family Reoviridae are nonenveloped, icosahedral viruses. Their genomes contain 10 segments of double-stranded RNA (dsRNA). The orthoreoviruses are divided into two subgroups, the fusogenic and nonfusogenic reoviruses, based on the ability of the virus to induce cell-to-cell fusion. The fusogenic subgroup consists of the avian reovirus, baboon reovirus, pteropine reovirus, and reptilian reovirus, whereas the nonfusogenic subgroup consists of the prototypical mammalian reovirus (MRV) species. MRVs are highly tractable experimental models for studies of segmented dsRNA virus replication and pathogenesis. Moreover, MRVs can selectively kill tumor cells and have been evaluated as oncolytic agents in clinical trials. This review provides a brief overview of current knowledge on the virological features of MRVs.
    Download PDF (2099K)
  • Eiko MATSUO
    2014 Volume 64 Issue 2 Pages 203-212
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    The members of Orbivirus genus within the family Reoviridae cause severe arthropod-born diseases mainly in ruminants and equids. In addition, the orbiviruses, which can infect humans, have been reported. In the last decade, the molecular and structural studies for orbiviruses, including Bluetongue virus (BTV), has made a great progress. Especially, a reverse genetics system (RG) for BTV, developed soon after Orhoreovirus and Rotavirus, is a major breakthrough. Here, I introduced the recent findings in orbivirus replication, especially the function of an enzymatic protein, VP6.
    Download PDF (1996K)
  • Takahide SASAYA
    2014 Volume 64 Issue 2 Pages 213-224
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    The family Reoviridae separates two subfamilies and consists of 15 genera. Fourteen viruses in three genera (Phytoreovirus, Oryzavirus, and Fijivirus) infect plants. The outbreaks of the plant-infecting reoviruses cause sometime the serious yield loss of rice and maize, and are a menace to safe and efficient food production in the Southeast Asia. The plant-infecting reoviruses are double-shelled icosahedral particles, from 50 to 80nm in diameter, and include from 10 to 12 segmented double-stranded genomic RNAs depending on the viruses. These viruses are transmitted in a persistent manner by the vector insects and replicated in both plants and in their vectors. This review provides a brief overview of the plant-infecting reoviruses and their recent research progresses including the strategy for viral controls using transgenic rice plants.
    Download PDF (2787K)
  • Sotaro CHIBA, Nobuhiro SUZUKI
    2014 Volume 64 Issue 2 Pages 225-238
    Published: December 25, 2014
    Released on J-STAGE: October 06, 2015
    JOURNAL FREE ACCESS
    Most of reported fungal viruses (mycoviruses) have double-stranded RNA (dsRNA) genomes. This may reflect the simple, easy method for mycovirus hunting that entails detection of dsRNAs as a sign of viral infections. There are an increasing number of screens of various fungi, particularly phytopathogenic fungi for viruses pathogenic to host fungi or able to confer hypovirulence to them. This bases on an attractive research field of biological control of fungal plant diseases using viruses (virocontrol), mainly targeting important phytopathogenic fungi. While isolated viruses usually induce asymptomatic symptoms, they show a considerably high level of diversity. As of 2014, fungal dsRNA viruses are classified into six families: Reoviridae, Totiviridae, Chrysoviridae, Partitiviridae, Megabirnaviridae and Quadriviridae. These exclude unassigned mycoviruses which will definitely be placed into distinct families and/or genera. In this review article, dsRNA viruses isolated from the kingdom Fungi including as-yet-unclassified taxa are overviewed. Some recent achievements in the related field are briefly introduced as well.
    Download PDF (2130K)
Topics
feedback
Top