Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Volume 96, Issue 7
Displaying 1-6 of 6 articles from this issue
Special Issue on “Emerging Technologies for Steel Process Control”
Preface
Regular Article
  • Yasumasa Fujisaki, Hiroshi Kitada, Toshiharu Sugie
    Article type: Regular Article
    Subject area: Special Issue on “Emerging Technologies for Steel Process Control”
    2010 Volume 96 Issue 7 Pages 426-433
    Published: July 01, 2010
    Released on J-STAGE: August 01, 2010
    JOURNAL OPEN ACCESS
    The objectives of secondary cooling zone control in continuous casting are (i) to achieve a suitable profile of strand temperature for a given casting speed and (ii) to suppress its deviation when casting speed changes due to a temporal operation. This paper presents a simulator based design of the cooling zone control which employs both static and dynamic compensators. A simulator of continuous casting process is developed, which enables us to quantify transient and steady state behaviors of the strand temperature. With the help of this simulator, a static nonlinear compensator for (i) is determined via a nonlinear optimization technique. Then, a dynamic simulation with the compensator is performed for a casting speed change, which gives a linear parameter varying (LPV) model that describes the transient behavior. Based on the model, a dynamic LPV compensator for (ii) is derived via an exact model matching technique. Simulation results show that a desirable strand temperature profile is obtained by the static nonlinear and the dynamic LPV compensators even when casting speed changes.
    Download PDF (606K)
  • Susumu Fujii, Koji Urayama, Kenji Kashima, Jun-ichi Imura, Tetsuaki Ku ...
    Article type: Regular Article
    Subject area: Special Issue on “Emerging Technologies for Steel Process Control”
    2010 Volume 96 Issue 7 Pages 434-442
    Published: July 01, 2010
    Released on J-STAGE: August 01, 2010
    JOURNAL OPEN ACCESS
    This paper discusses a slab reheating furnace control problem for a hot strip mill, where permutation scheduling of slabs charged into a furnace and temperature control of slabs inside a furnace are simultaneously optimized in the conveyor-type model. The problem is solved within the framework of hybrid systems theory, in particular, model predictive control based on mixed logical dynamical model representation. We propose a novel modeling scheme of this process, which makes the computation time for deriving the solution remarkably smaller than the case of the usual modeling.
    Download PDF (657K)
  • Shiro Masuda, Kazuya Asano, Kizuku Imai
    Article type: Regular Article
    Subject area: Special Issue on “Emerging Technologies for Steel Process Control”
    2010 Volume 96 Issue 7 Pages 443-450
    Published: July 01, 2010
    Released on J-STAGE: August 01, 2010
    JOURNAL OPEN ACCESS
    This paper gives a design method for a model predictive control (MPC) approach by using a unified performance index throughout the start-up phase tension and looper control which consists of the non-contact and contact modes in order to suppress the deviation of the strip tension while the looper contacts with the strip as quickly as possible. In this paper, the control problem is formulated as a bi-modal hybrid MPC design using an optimal condition for mode transition. In addition, the paper gives a method using a continuation method to achieve on-line implementation. The efficiency of the proposed method is shown through numerical simulations.
    Download PDF (564K)
  • Mitsuo Hirata, Akihiro Eda, Kenichi Furuya, Akira Kojima, Shiro Masuda ...
    Article type: Regular Article
    Subject area: Special Issue on “Emerging Technologies for Steel Process Control”
    2010 Volume 96 Issue 7 Pages 451-458
    Published: July 01, 2010
    Released on J-STAGE: August 01, 2010
    JOURNAL OPEN ACCESS
    The coiler system is a final part of hot rolling process. The torque of the mandrel and the force imposed on the pinch roll are cooperatively controlled in order to suppress the tension fluctuation when the steel plate leaves the final stand. In this paper, the coiler system is modeled as a bimodal hybrid system, and two control methods are applied. The effectiveness of the proposed methods are evaluated by simulation.
    Download PDF (720K)
  • Kohei Ozaki, Toshiyuki Ohtsuka, Kenji Fujimoto, Akira Kitamura, Makish ...
    Article type: Regular Article
    Subject area: Special Issue on “Emerging Technologies for Steel Process Control”
    2010 Volume 96 Issue 7 Pages 459-467
    Published: July 01, 2010
    Released on J-STAGE: August 01, 2010
    JOURNAL OPEN ACCESS
    For precise control of tension and thickness in a tandem cold mill in acceleration and deceleration conditions, we develop a nonlinear model including the rolling speed as a time-varying parameter. It is demonstrated in simulation results that nonlinear receding horizon control by real-time optimization achieves satisfactory performance for the nonlinear model.
    Download PDF (826K)
feedback
Top