Journal of Geography (Chigaku Zasshi)
Online ISSN : 1884-0884
Print ISSN : 0022-135X
ISSN-L : 0022-135X
Volume 88, Issue 1
Displaying 1-10 of 10 articles from this issue
  • Nobuyuki YONEKURA, Tokihiko MATSUDA, Michio NOGAMI, Sohei KAIZUKA
    1979 Volume 88 Issue 1 Pages 1-19
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    The Cordillera Blanca of the Peruvian Andes is a glaciated mountain range, the highest peak of which is Nevados Huascaran, 6768 meters high above sea level. The Cordillera Blanca is composed mainly of a batholith dating from 3 to 12 million years ago. The southwest slopes of the Cordillera are steep fault scarps developed in the Quaternary (WILSON et al., 1967 DALMAYRAC, 1974). These fault scarps are developed along what is here termed the Cordillera Blanca Fault. To the southwest, the Cordillera Blanca is bounded by the fault and the valley of Rio Santa, while to the northeast of the Cordillera, no notable active fault appears in the Mesozoic fold belt (Figs. 1 and 2).
    The Cordillera Blanca Fault is easily recognized even on the LANDSAT images (Photo. 1). The total length of the fault is about 180-200 km and the relative height of fault scarps is over 4000 meters in muximum near Nevados Huascaran. The topographic features of the fault change from north to south. In the northern part, the fault scarp is high and steep and the fault line is simple. In the central part, the fault line waves and a cusp is formed to the northeast of Huaraz city. In the southern part, the relative heights of fault scarps become smaller and many fault scarplets run discontinuously in échelon (Figs. 3 and 5).
    Two regions in the southern part of the Cordillera Blanca Fault were investigated in November, 1970. The amount of fault displacements at the Queroccocha Valley and the Tuco Valley were measured using correlative moraine ridges in the valley sides and surfaces of fluvial terraces in the valley floors (Figs. 5-12). Unfortunately, data on the absolute ages of these landforms was unobtainable. They were estimated by comparing the succession of moraines with the age-known moraines formed from the last glacial expansion to the present in the Chilean Andes (for example, MERCER, 1976).
    Our investigation demonstrates that the Cordillera Blanca Fault is an active normal fault and that faulting has occurred progressively in the late Quaternary. The main results obtained follow :
    1) Faulting has occurred progressively at least during the last 20, 000 years. The outermost morain ridge estimated about 20, 000 years ago (M1) has a vertical offset of 57 meters at the Tuco Valley. The second ridge estimated about 13, 000 years ago (M2) has a vertical offset of 25 meters at the Queroccocha Valley.
    2) The average rate of vertical displacement along the fault is estimated to be 2 meters at the Queroccocha Valley and 3 meters at the Tuco Valley per one thousand years.
    3) The values of vertical offsets which occurred during the different ages suggest that the amount of vertical displacements at one event of the faulting may be 2 and 3 meters at the Queroccocha and Tuco Valleys, respectively.
    4) These results imply that the Cordillera Blanca Fault has a recurrence interval of about one thousand years.
    5) If the faulting has continued at the same rate as in the late Quaternary, the amount of vertical displacement ranges from 2, 000 or 3, 000 meters for one million years. These values are of the same order as the relative heights of fault scarps at the western slope of the Cordillera Blanca. This means that the Cordillera Blanca Fault has been playing an important role in relief forming of the Cordillera Blanca and the Santa Valley.
    Download PDF (4297K)
  • Shiro MAEDA, Hiroshi SAWANO, Tetsuya KAWABE
    1979 Volume 88 Issue 1 Pages 20-28
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    In the Boso Peninsula, the Cenozoic marine strata, especially of younger Cenozoic age, are well exposed successively, and full of fossils along the Yoro, Obitsu and Minato Rivers. Although calcareous nannoplanktons are abundant in these strata, the study on them has rarely been done except by TAKAYAMA (1967), NISHIDA (1976, 77) and MAEDA and SAWANO (1978).
    This study was planned in order to find out the stratigraphic distribution of the assemblages of calcareous nannoplankton from the Anno Formation along the Inokawa River, which is the uppermost tributary of the Obitsu River in the Central Boso.
    Calcareous nannoplankton floras were obtained from 32 horizons as shown in Fig. 2. A total of 16 species of calcareous nannoplankton belonging to 10 genera were identified. Among calcareous nannoplankton floras, Reticulofenestra japonica was very abundant through the lower horizon to upper one of the formation. The lower horizon was characterized by the abundance of R. pseudoumbilica, Cyclococcolithina leptopora and Cy. macintyrei, and the middle horizon by existence of R. pacifica and Coccolithus productus. On the contrary, in the upper horizon, Pseudoemiliania lacunosa and Gephyrocapsa caribbeanica increased in number, while the genus of Discoaster decreased distinctly.
    It is worthy of note that R. pseudoumbilica could not be seen in the uppermost horizon of the formation. Based on the remarkable facts of the first appearance of R. pacifica, Ps. lacunosa and G. caribbeanica, and the extinction of Sphenolithus abies and R. pseudoumbilica, the calcareous nannoplankton floras of the Anno Formation were divided into 6 assemblage zones.
    Judging from the characteristics of the assemblages, it is thought that the Anno Formation was deposited from the late stage of early pliocene to middle pliocene in geologic age.
    Download PDF (1608K)
  • Nobuo YAMAGIWA, Kenichi NARUHASHI, Yasuki TSUJII, Takako FUJITA, Tomok ...
    1979 Volume 88 Issue 1 Pages 29-39
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Recently, many corals were collected by the writers from the Imaura Group in the eastern part of the Shima Peninsula. This Group geotectonically belongs to the southern subbelt of the Chichibu belt. It is bounded on the north by the Middle to Upper Permian Aonomine Group and on the south by the Tsuiji Group probably correlated with the Konose Group in Kyushu. These Groups are in contact with each other by faults.
    The Imaura Group (10220 m+thick) trends ENE-WSW and dips northward of about 5060 degrees ; mainly composed of sandstone, mudstone and alternations of sandstone & mudstone, occasionally intercalating grey limestone lenses.
    The limestone lenses in the Imaura Group yield 46 coral species including 9 new species as shown in Table 2. The coral assemblage listed in Table 2 is very similar to those of the Upper Jurassic in the outer zone of Southwest Japan, Kwanto massif and Soma area. This datum does not conflict with the evidence from the Torinosu type pelecypod assemblage in this Group.
    Download PDF (2288K)
  • Kiyoshi OKUMURA, Haruhiko YOSHIDA, Kuniyoshi KATO
    1979 Volume 88 Issue 1 Pages 40-52
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Die Pleistozän Miyata Formation, die sich im südlichen Teil der Miura-Halbinsel Kanagawa, Süd-Kanto, Japan, entwickelt hat, besteht hauptsächlich aus feinem bis grobem Sand. Sie ist in 5 Schichten gegliedert, nämlich (in absteigender Reihenfolge) Itchyoda Sand, Shaana Pyroclastischer Sand, Koenbo Sand, Tsukuihama Sand und Geröll und Sugaruya Sand (Okumura u. a., 1977). Sehr viel Weichtier-Fossilien findet man in der Formation, besonders im Shaana Pyroclastischen Sand und Tsukuihama Sand und Geröll.
    Die Autoren sammelten 11, 333 Fossil-Weichtiere von 253 Arten in 10 Weichtier-Faunas aus der Miyata-Formation. In dieser Abhandlung wird der Inhalt der Weichtier-Fauna aus der Formation im Detail besprochen und ihre Einwirkung auf die thermalen und bathymetrikalen Bedingungen diskutiert.
    Beachtenswert ist, daß die Weichtier-Fauna aus der Miyata-Formation sich hauptsächlich aus 3 Elementen zusammensetzt : aus dem sogenannten japanischen Typ, dem Kuroshio-Typ und dem Oyashio-Typ unter dem Gesichtspunkt der Wärme-Bedingung, und einige Faunas bestehen bathymetrikal aus 2 Elementen, den euneritischen und den subneritischen. Das euneritische Element besteht sowohl aus den Kuroshio-als auch den Oyashio-Bewohnern, das subneritische Element jedoch besteht aus Kuroshio-Bewohnern.
    Die Faunas, die von den Lagen 1, 4, 5, 6 und 7 (Abb. 1) gesammelt wurden, bestehen hauptsächlich aus euneritischen Bewohnern der japanischen, d.h. der Kuroshio und Oyashio Typen, das Oyashio Element dagegen ist verhältnismäßig selten in den Faunas aus den Lagen 1 und 7. Diese Fossilien, die aus den Lagen 1, 4, 5, 6 and 7 gesammelt wurden, sind allgemein gut erhalten, sogar ihre kleinste Oberflächen-Struktur ist erhalten, oft war ihre Original-Färbung bewahrt und sogar ganz dunne Schalen-Weichtiere wurden gesammelt. Diese Tatsachen zeigen und der gute Zustand der Erhaltung offenbart, daß sie nicht transportiert wurden.
    Die Weichtier-Faunas, die aus den Lagen 2 und 3 gesammelt wurden, bestehen aus 2 Elementen, nämlich den euneritischen and den subneritischen. Das erstere Element besteht sowohl aus dem Kuroshio als auch dem Oyashio Typ und das spätere hauptsächlich aus dem Kuroshio Typ. Wenn man aus der Art und Weise des Vorkommens und dem guten Zustand der Erhaltung jeden Fossils urteilt, dann wurden die euneritischen Bewohner durch die Grundströmung in tiefergelegene Meeresböden fortbewegt und mit dem subneritischen Kuroshio Element wie dem subneritischen am Meeresboden vermischt.
    Vom Inhalt der Weichtier-Fauna her kann gesagt werden, daß die Miyata Formation auf dem euneritischen oder subneritischen Meeresboden abgelagert wurde. Und das Meer, in dem die Formation abgelagert wurde, war geographisch zum Osten hin offen. Ebenso wird vermutet, daß der subneritische Meeresboden weitgehend durch die Kuroshio Meeresströmung beeinflußt wurde. Der seichtere Meeresboden jedoch wie der euneritische war großenteils beeinflusst von der Oyashio-Strömung, die vom Kuroshio-Strom unterstützt wurde.
    Download PDF (1617K)
  • Teiichi KOBAYASHI
    1979 Volume 88 Issue 1 Pages 53-55
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Download PDF (541K)
  • [in Japanese]
    1979 Volume 88 Issue 1 Pages 56
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Download PDF (228K)
  • [in Japanese]
    1979 Volume 88 Issue 1 Pages 56a-57
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Download PDF (312K)
  • [in Japanese]
    1979 Volume 88 Issue 1 Pages 57
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Download PDF (89K)
  • 1979 Volume 88 Issue 1 Pages e1
    Published: 1979
    Released on J-STAGE: February 25, 2010
    JOURNAL FREE ACCESS
    Download PDF (25K)
  • N. Yonekura, [in Japanese], [in Japanese], [in Japanese]
    1979 Volume 88 Issue 1 Pages Plate1-Plate2
    Published: February 25, 1979
    Released on J-STAGE: November 12, 2009
    JOURNAL FREE ACCESS
    Download PDF (2226K)
feedback
Top