The distributions of β-defensin 1 and 2 in secretory host defense system throughout respiratory tract of healthy rats were immunohistochemically investigated. In the nasal epithelium, a large number of non-ciliated and non-microvillous cells (NCs) were immunopositive for both β-defensin 1 and 2, whereas a small number of goblet cells (GCs) were immunopositive only for β-defensin 1. Beta-defensin 2-immunopositive GCs were few. In the nasal glands, a small number of acinar cells and a large number of ductal epithelial cells were immunopositive for both β-defensins. In the laryngeal and tracheal epithelia, a very few NCs and GCs were immunopositive for both β-defensins. In laryngeal and tracheal glands, a very few acinar cells and a large number of ductal epithelial cells were immunopositive for both β-defensins. In the extra-pulmonary bronchus, a small number of NCs were immunopositive for both β-defensins. A small number of GCs were immunopositive for β-defensin 1, whereas few GCs were immunopositive for β-defensin 2. From the intra-pulmonary bronchus to alveoli, a very few or no epithelial cells were immunopositive for both β-defensins. In the mucus and periciliary layers, β-defensin 1 was detected from the nose to the extra-pulmonary bronchus, whereas β-defensin 2 was weakly detected only in the nose and the larynx. These findings suggest that the secretory sources of β-defensin 1 and 2 are mainly distributed in the nasal mucosa and gradually decrease toward the caudal airway in healthy rats.
Superficial digital flexor tendon (SDFT) of the bovine hindlimb originates from the caudolateral aspect of the distal femur and finally inserts onto the plantar aspect of the middle phalanges. In the present study, morphology and morphometry of the bovine SDFT at the muscle-tendon junction (MTJ), middle metatarsus (mM) and tendon-bone interface (TBI) were investigated. Cross-sectional morphology at the three regions of SDFT were oval, semioval and ring-formed, respectively. Significant difference in cross-sectional area was found only between MTJ-mM and mM-TBI (P<0.05). Functional compression and friction from the adjacent structures could be the most potential interactions affecting such appearances. Morphometric data of tenocyte number, water content, and glycosaminoglycan (GAG) length and angle were found increasing in the proximodistal direction, except the fibril diameter and collagen fibril index (CFI). Statistical analyzes could reveal significant differences in average number of tenocytes (P<0.0001), CFI (between MTJ-mM and MTJ-TBI, P<0.05), water content (between MTJ-TBI, P<0.05), length of GAG chains (between MTJ-TBI, P<0.05), and angle of GAG chains (P<0.0001), respectively. The fibrillar characteristics at the three different areas, including fibril diameter distribution and interfibrillar distance, existed in conforming to the tensional axes in situ. In addition, length and angle of GAG chains were relevant to moving directions of the collagen fibrils.
Owl monkeys are the only one species possessing the nocturnal lifestyles among the simian monkeys. Their eyes and retinas have been interested associating with the nocturnal adaptation. We examined the cellular specificity and electroretinogram (ERG) reactivity in the retina of the owl monkeys by comparison with the squirrel monkeys, taxonomically close-species and expressing diurnal behavior. Owl monkeys did not have clear structure of the foveal pit by the funduscope, whereas the retinal wholemount specimens indicated a small-condensed spot of the ganglion cells. There were abundant numbers of the rod photoreceptor cells in owl monkeys than those of the squirrel monkeys. However, the owl monkeys’ retina did not possess superiority for rod cell-reactivity in the scotopic ERG responses. Scanning electron microscopic observation revealed that the rod cells in owl monkeys’ retina had very small-sized inner and outer segments as compared with squirrel monkeys. Owl monkeys showed typical nocturnal traits such as rod-cell dominance. However, the individual photoreceptor cells seemed to be functionally weak for visual capacity, caused from the morphological immaturity at the inner and outer segments.
Aeromonas hydrophila is an opportunistic pathogen of a variety of aquatic animals that displays extreme diversity in drug resistance, phenotypes, virulence genes, and virulence. In this study, eight pathogenic A. hydrophila strains were isolated from diseased Amur sturgeons and investigated for their sensitivity to select antibiotics, their phenotype, virulence genes, and virulence. According to the phylogenetic analysis of the DNA gyrase subunit B protein, the eight isolates formed a single branch in the A. hydrophila group. The antibiotics ceftazidime, cefuroxime, cefoperazone, cefotaxime, ceftriaxone, aztreonam, and cefepime appeared effective against them. All of the isolates possessed the virulence genes for aerolysin, flagellin, heat-stable cytotonic enterotoxin, heat-labile cytotonic enterotoxin, hemolysin, and elastase, while only one isolate, HZ8, possessed the gene for lateral flagella. The cytolytic enterotoxin and lipase genes were present in all isolates, except in ZJ10 and ZJ12. Enterobacterial repetitive intergenic consensus sequence PCR indicated that the eight A. hydrophila isolates could be divided into four types. Isolates YW2, TR3, HZ8 and ZJ10, each representing a different type, were selected for challenge experiments. The challenge tests revealed that isolate HZ8 had the lowest lethal dose, causing 50% mortality at 2.30 × 104 colony forming units (cfu)/ml. The isolate ZJ10 had the highest LD50, 1.25 × 106 cfu/ml. Knowledge of the characteristics of the A. hydrophila isolates obtained from Amur sturgeon will be beneficial in developing potential disease control strategies.
In this study, we have identified a bacterium that can inhibit the growth of Staphylococcus aureus, and further analyzed its antibacterial activity and other biological characteristics and laid the foundation for its future application. Through isolation and culture of the unknown bacteria, the culture characteristics, morphology observation, biochemical test, preliminary antibacterial test, 16S rRNA PCR amplification, sequence analysis, and homology analysis were performed. It was found that the bacteria are Gram positive spore chain Bacillus. The bacteria could only ferment glucose for acid production, but could not utilize lactose and maltose. The VP test for this bacteria was positive, while indole and methyl red tests were negative. Further analysis showed that these bacteria shared a homology up to 99.4% with Bacillus subtilis DQ198162.1. Thus, this newly identified bacterium was classified as Bacillus subtilis. Importantly, the crude bacteriocin of this Bacillus subtilis could inhibit the growth of Staphylococcus aureus, Escherichia coli, Enterococcus and Salmonella, which implies its potential usage in the future.
Disc immuno-immobilization is a simple method for typing the flagellar phase of Salmonella enterica. We re-examined this method using commercial antisera, which contains the preservative sodium azide. Originally prepared motility agar activates bacterial motility and renders S. enterica resistant to sodium azide, resulting in the formation of immuno-immobilization lines around reactive immuno-discs. Though disc immuno-immobilization serves both serotyping and phase inversion, this method is insufficient for the strains in which phase variation rarely occurs. Here, we devised a novel immuno-disc phase inversion method, and all S. enterica strains tested were identically typed. These methods would drastically simplify the task of S. enterica typing in clinical laboratories.
The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.
Chronic kidney disease (CKD) is a common cause of secondary systemic hypertension in cats. We investigated the relationship between indirect blood pressure and the prevalence of systemic hypertension in various CKD stages in cats. Client-owned cats (24 control cats and 77 cats with CKD) were included. Biochemical examinations of plasma were conducted by a commercial laboratory. Diseased cats were divided into two groups based on the International Renal Interest Society (IRIS) guidelines (II and III–IV). Indirect blood pressure was measured using an oscillometric technique. Severe hypertension was diagnosed if systolic blood pressure (SBP) was ≥180 mmHg. Indirect blood pressures were significantly higher in IRIS stage III–IV than in the control cats. Of 77 cats with CKD, 25 (32.5%) had severe hypertension. The frequency of severe hypertension increased with an increase in IRIS stage; 0% in the controls, 27.6% in the IRIS stage II, and 47.4% in the IRIS stage III–IV, respectively. The indirect SBP was weakly correlated with urea nitrogen (r=0.27) and creatinine (r=0.23) concentrations in plasma. Binary logistic regression analysis showed that if plasma creatinine concentration is >3.7 mg/dl, cats with CKD had an increased risk for developing severe hypertension (P<0.001). Our results suggest that indirect blood pressure was correlated with the severity of CKD, and the prevalence of severe hypertension increased in cats with severe CKD. The risk of severe hypertension may be high in cats with severe CKD.
Quantitative contrast-enhanced ultrasonography (CEUS) enables non-invasive and objective evaluation of intestinal perfusion by quantifying the intensity of enhancement on the intestine after microbubble contrast administration. During CEUS scanning, sedation is sometimes necessary to maintain animal cooperation. Nevertheless, the effect of sedative administration on the canine intestinal CEUS is unknown. This study aimed to investigate the effect of sedation with a combination of butorphanol and midazolam on the duodenal CEUS-derived perfusion parameters of healthy dogs. For this purpose, duodenum was imaged following contrast administration (Sonazoid®, 0.01 ml/kg) in six healthy beagles before and after intravenous injection of a combination of butorphanol (0.2 mg/kg) and midazolam (0.1 mg/kg). Furthermore, hemodynamic parameters including blood pressure and heart rate were recorded during the procedure. Five CEUS derived perfusion parameters including time-to-peak (TTP), peak intensity (PI), area under the curve (AUC), wash-in and wash-out rates (WiR and WoR, respectively) before and after sedation were statistically compared. The result showed that no significant change was detected in any of perfusion parameters. Systolic and mean arterial pressures significantly reduced after sedative administration, but diastolic arterial pressure and heart rate did not significantly change. Moreover, no significant partial correlation was observed between perfusion parameters and hemodynamic parameters. Thus, we concluded that the combination did not cause significant influence in duodenal CEUS perfusion parameters and could be a good option for sedation prior to duodenal CEUS in debilitated dogs.
A 14-year-old intact male West Highland White Terrier weighing 6.9 kg was admitted to the Tokyo University of Agriculture and Technology Animal Medical Center with the complaint of syncope after showing signs of nausea during feeding. Sinus arrest induced by deglutition was confirmed using a Holter electrocardiography test. However, the clinical symptoms significantly improved after implantation of a permanent pacemaker. Seven months after implantation, the dog died from acute pancreatitis, a cause unrelated to the syncope. Immediately after its death, the heart, lungs, gastrointestinal tract, and other organs were dissected and examined histopathologically. The brain was also examined using magnetic resonance imaging. Examination results led to the diagnosis of swallowing-induced situational syncope.
Conventional clinical treatments for allergy management remain suboptimal; new, orally available medications that improve a wide range of allergic signs have been desired. We previously demonstrated that JTE-852, a novel spleen tyrosine kinase inhibitor, potently and simultaneously suppresses secretion of granule contents, arachidonate metabolites, and cytokines from mast cells stimulated by immunoglobulin E-crosslinking. In the present study, we investigated the effects of JTE-852 in four rat models (sneezing, rhinorrhea, airway constriction, and airway inflammation) as representatives of allergy models. Rats were sensitized and challenged with antigen. Allergic reactions developed after challenge were detected. JTE-852 and current anti-allergic drugs (ketotifen, pranlukast, and prednisolone) were administered orally before challenge. JTE-852 showed significant blocking effects on antigen-induced allergic reactions in all models, indicating that JTE-852 in oral dosage form would improve a wide range of allergic signs. The current anti-allergic drugs, on the other hand, failed to display significant suppression in several models. Because JTE-852 suppresses the secretion of all three groups of allergic mediators from mast cells, it would be capable of targeting signs that current drugs cannot sufficiently relieve. We anticipate JTE-852 to be a promising new anti-allergic drug that is potentially more effective than conventional drugs.
Canine squamous cell carcinoma (SCC) shows highly invasive and locally destructive growth. In animal models and human cancer cases, periostin plays a critical role in the enhancement of cancer growth; however, the mechanism of involvement in canine cancers remains unknown. The aim of this study was to examine the involvement of periostin in the pathophysiology of SCC in dogs. We examined the localization of periostin and periostin-producing cells in 20 SCC and three squamous papilloma specimens. Furthermore, we focused on transforming growth factor (TGF)-β1, which was assumed to be an inducing factor of periostin, using culture cells. By immunohistochemistry, limited periostin expression in the stroma was observed in all squamous papillomas. In SCC, periostin protein diffusely expressed at the tumor invasion front of cancer growth. In situ hybridization revealed that periostin mRNA was expressed in the stromal fibroblasts in SCC. In vitro analysis determined that canine SCC cells expressed significantly higher levels of TGF-β1 mRNA compared with canine keratinocytes. In addition, recombinant TGF-β1 induced secretion of periostin from cultured dermal fibroblasts. These data suggest that periostin produced by stromal fibroblasts may be involved in the pathophysiology of canine SCC. TGF-β1 derived from SCC cells may stimulate fibroblasts to produce periostin.
An 8-year-old male Japanese Shiba exhibited muscle wasting and a stiff gait. A low-amplitude myotonic discharge was recorded by needle electromyography (EMG). A histopathological examination on a tru-cut biopsy sample from the muscle revealed myofiber size variations. Internal nuclei and cytoplasmic vacuoles were observed in many fibers. A type 1 fiber predominance and many hybrid type fibers were observed immunohistochemically. On the basis of these EMG and histopathological findings, myotonic dystrophy (DM) was suspected as tentative diagnosis. The cytoplasm around the vacuoles was immunopositive for cytochrome c, tom 20, and SOD-1, suggesting that these vacuoles might occur within mitochondria. Collectively, these results indicate that a mitochondrial abnormality partly play the role on the pathogenesis of present case.
Lilies are considered nephrotoxic only to domestic cats, which belong to the family Felidae of the suborder Feliformia. However, a 7-month-old female meerkat, belonging to the family Herpestidae of the suborder Feliformia, presented with oliguria, seizure, tachypnea, self-biting, and nystagmus after it ingested lilies. The meerkat died approximately 40 hr after lily ingestion. Gross and histopathologic lesions consistent with acute renal failure were conspicuous in the animal. The renal lesions were acute tubular necrosis, corresponding to the typical pathological changes of lily toxicosis in cats. In addition, massive hepatocyte necrosis and pulmonary congestion/edema were observed. These findings suggest that lily toxicosis in meerkats is characterized by pulmonary and hepatic failure, in addition to the renal failure observed in domestic cats.
A mass was found at the base of the dorsum linguae of a male 11-year-old Labrador retriever. The tumor comprised of ganglion cells and Schwannian cells with Verocay bodies. The ganglion cells were positive for neuron-specific enolase, S-100, nerve growth factor receptor, and beta III tubulin. The Schwannian cells were positive for neuron-specific enolase, S-100, nerve growth factor receptor, and glial fibrillary acidic protein. The lingual mass was diagnosed as a ganglioneuroma. To our knowledge, there has been no previous report of a lingual ganglioneuroma in a dog.
The neurokinin 1 receptor (NK1R) plays an important role in the pathogenesis of acute pancreatitis (AP). Maropitant is an NK1R antagonist that is widely used as an antiemetic in dogs and cats. In the present study, we investigated the anti-inflammatory action of maropitant in a mouse model of AP. AP was induced in BALB/c mice by intraperitoneal administration of cerulein, and maropitant was administered subcutaneously at a dose of 8 mg/kg. We assessed the mRNA expression levels of NK1R and substance P (SP) in the pancreatic tissue via real-time reverse transcription polymerase chain reaction. In addition, the effect of maropitant on plasma amylase, lipase, and interleukin-6 (IL-6) levels was measured in each mouse. Inflammatory cell infiltration in the pancreas was assessed by myeloperoxidase (MPO) staining. Our results showed that AP induction significantly elevated the mRNA expression of SP in the pancreatic tissue. Treatment with maropitant significantly lowered plasma amylase and IL-6 levels. In addition, treatment with maropitant inhibited the infiltration of MPO-positive cells in the pancreas. The present study suggests that maropitant possesses an anti-inflammatory activity, in addition to its antiemetic action.
The present study was designed to clarify phosphodiesterase 9 (PDE9) expression in bovine tracheal smooth muscle tissue, and to elucidate that PDE9 may contribute to the regulation of airway relaxation. PDE9 mRNA expression was detected in bovine tracheal smooth muscle. Sodium nitroprusside (an NO donor) and BAY 73–6691 (a selective PDE9 inhibitor) reduced high K+- and carbachol-induced contraction. BAY 73–6691 relaxed tracheal tissue on the same level with vardenafil (a selective PDE5 inhibitor). These results support our hypothesis that PDE9 plays functional role in the tracheal smooth muscle relaxation. PDE9 inhibitors are expected to be a novel target of the add-on treatment of airway hyperresponsiveness.
It is well known that maternal stress during the gestation and lactation periods induces abnormal behavior in the offspring and causes a lowering of the offspring’s body weight. Various causes of maternal stress during the lactation period, relating to, for example, maternal nutritional status and reduced maternal care, have been considered. However, little is known about the effects on milk of maternal stress during the lactation period. The current study aimed to determine whether free amino acids, with special reference to sulfur-containing amino acids in milk, are altered by restraint stress in lactating mice. The dams in the stress group were restrained for 30 min at postnatal days 2, 4, 6, 8, 10 and 12. Restraint stress caused a reduction in the body weight of lactating mice. The concentration of taurine and cystathionine in milk was significantly higher in the stress group, though stress did not alter their concentration in maternal plasma. The ratio of taurine concentration in milk to its concentration in maternal plasma was significantly higher in the stress group, suggesting that stress promoted taurine transportation into milk. Furthermore, taurine concentration in milk was positively correlated with corticosterone levels in plasma. In conclusion, restraint stress in lactating mice caused the changes in the metabolism and in the transportation of sulfur-containing amino acids and resulted in higher taurine concentration in milk. Taurine concentration in milk could also be a good parameter for determining stress status in dams.
The purpose of this study was to investigate the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-Ec) in retail chicken meats in Japan. Fifty-six domestic and 50 imported (Brazil, n=36; United States, n=8; Thailand, n=6) chicken meat samples were analyzed. The 162 ESBL-Ec included 111 from 43 (77%) domestic samples and 51 from 26 (52%) Brazilian samples. Fifty-three and 30 of 111 and 51 ESBL-Ec from domestic and Brazilian chickens, respectively, were selected for ESBL genotyping. The blaCTX-M (91%), blaTEM (36%) and blaSHV (15%) genes were detected in ESBL-Ec isolated from domestic chickens, whereas blaCTX-M (100%) and blaTEM (20%) were detected in ESBL-Ec isolated from imported chickens. Among the blaCTX-M group, blaCTX-M-2 (45%) and blaCTX-M-1 (34%) were prevalent in domestic chicken isolates, whereas blaCTX-M-2 (53%) and blaCTX-M-8 (43%) were prevalent in imported chicken isolates. Domestic chicken isolates were mostly resistant to tetracycline (83%), followed by streptomycin (70%) and nalidixic acid (62%). Imported chicken isolates were resistant to streptomycin (77%), followed by nalidixic acid (63%) and tetracycline (57%). Notably, extensive multidrug resistance was detected in 60% (32/53) and 70% (21/30) ESBL-Ec from domestic and imported chickens, respectively. Virulence genes associated with diarrheagenic and extra-intestinal pathogenic E. coli were detected in ESBL-Ec isolated from domestic and imported chickens. These data suggest that ESBL-Ec in retail chicken meats could be a potential reservoir for antimicrobial resistance determinants and that some are potentially harmful to humans.
A set of evidence-based consensus guidelines for cardiopulmonary resuscitation (CPR) in dogs and cats (RECOVER guidelines) was published in 2012. The purpose of this study was to investigate the clinical outcomes of CPR performed according to those guidelines in dogs. A total of 141 dogs with cardiopulmonary arrest (CPA) were identified and underwent CPR between January 2012 and December 2015 at the Sapporo Nighttime Animal Hospital. CPR was performed according to no-consensus traditional veterinary CPR procedures in 68 dogs (TRADITIONAL group), and according to the RECOVER guidelines in 73 dogs (RECOVER group). There was no significant difference in the age, body weight, or time from CPA identification to initiation of CPR between the TRADITIONAL and RECOVER groups (median [range]: 10 [0–16] vs. 11 [0–16] years; 6.6 [1.0–58.6] vs. 5.5 [1.1–30.4] kg; and 0 [0–30] vs. 0 [0–30] min, respectively). In the TRADITIONAL group, 12 dogs (17%) achieved a return of spontaneous circulation (ROSC), but none survived to hospital discharge. However, 32 dogs (43%) in the RECOVER group achieved ROSC, and 4 dogs (5%) were discharged from the hospital. Incorporating the RECOVER guidelines into clinical practice significantly improved the ROSC rate (P<0.001). However, the rate of survival to hospital discharge was still low. This may suggest that a superior intensive care unit that provides advanced post-CPA care could benefit veterinary CPR patients.
We compared clinical outcomes after ventral fixation in dogs with atlantoaxial instability (AAI) on the basis of the presence or absence of atlantooccipital overlapping (AOO). Of 41 dogs diagnosed with AAI and treated ventral fixation, 12 exhibited AOO (AOO group), whereas 29 did not (non-AOO group). The AOO group had significantly higher neurological scores before (P=0.024) and 1 month after (P=0.033) surgery compared with the non-AOO group; however, no significant differences were observed between the groups 2 months after surgery. The presence of complicating AOO affected the clinical signs for dogs with AAI, but did not directly affect the outcome of surgical stabilization of AAI.
It is currently unclear how mechanical micro-vibration affects the in vitro culture of embryos in Japanese Black cow. In the experimental groups, immature oocytes and fertilized embryos were cultured using the micro-vibration culture system with the vibration set for 5 sec at intervals of 60 min and frequency of 20, 40 or 80 Hz, respectively, during in vitro maturation and in vitro development. Compared with the control group, the rate of blastocyst development significantly increased in the 40 Hz group. In addition, the number of blastocyst cells reduced significantly in the 80 Hz group. In conclusion, the development of blastocysts in cows is facilitated by providing moderate mechanical micro-vibration to immature oocytes and embryos during the in vitro maturation and in vitro development.
Bisphenol A (BPA) is among the better-known endocrine disruptors. BPA is used in various food-contacting materials and is easily eluted into food; as a result, we are exposed to BPA on a daily basis. In adults, BPA is metabolized and eliminated rapidly from the body. However, numerous reports suggest that fetuses and young children are susceptible to BPA. One of the concerning adverse effects of BPA is disruption of behavior, especially anxiety-like behavior. In order to study the mechanism of influences on offspring, it is important to clarify the most vulnerable gestation period. We hypothesized that offspring in late pregnancy would be more susceptible to BPA, because late pregnancy is a critical time for functional brain development. In this study, C57BL/6 mouse fetuses were exposed prenatally by oral dosing of pregnant dams, once daily from gestational day 5.5 to 12.5 (early pregnancy) or 11.5 to 18.5 (late pregnancy), with BPA (0 or 10 mg/kg body weight). Following birth and weaning, the resulting pups were tested using an elevated plus maze at postnatal week 10. The behavior of the offspring was altered by prenatal BPA exposure during late pregnancy but not during early pregnancy. These results indicated that offspring are more vulnerable to exposure to BPA in late pregnancy.
To examine outbreaks of mange in raccoon dogs (Nyctereutes procyonoides) with respect to population density, we analyzed camera trap videos, and isolated mites from raccoon dog carcasses. In a camera trapping survey, we categorized the skin condition of raccoon dogs, and used a number of independent videos to calculate the relative abundance index (RAI). The RAI of raccoon dogs with alopecia increased following an increase in the RAI of those without alopecia. Among 27 raccoon dog carcasses, 12 showed mange-compatible skin lesions. Sarcoptes scabiei was isolated from 11 of these raccoon dogs, indicating that sarcoptic mange was endemic in our study area. Therefore, a high relative population density may be a factor underlying epizootics of sarcoptic mange in raccoon dogs.
Immunolocalization of inhibin-α and inhibin/activin βA and βB subunits in the testes of Asian elephant was determined. Testicular sections were immunostained with polyclonal antisera against inhibin subunit-α and inhibin/activin βA and βB using the avidin-biotin-peroxidase complex method. Positive immunostaining against inhibin-α subunit was strongly present in Sertoli cells, and positive immunostaining for the inhibin/activin βA and βB subunits was observed in both Sertoli and Leydig cells. These results indicated that while Sertoli cells are the predominant source of inhibin and activin secretions in the testes of adult male Asian elephant, Leydig cells are a source of activin but not inhibin.
An outbreak of botulism occurred over a two-month period beginning July 20, 2016. In all, 697 wild birds were found paralyzed or dead at the Namdong reservoir and 11 Gong-gu. Using a mouse bioassay, type C botulinum toxin was identified in the bird serum, liquid cultures of soil samples, and maggot extracts. To minimize further infection of wild birds, we opened the floodgates of the Namdong reservoir adjacent to the Yellow Sea; this decreased the water temperature and the nutrient load such as nitrogen and phosphorus. The outbreak stopped shortly after taking these actions. It is not known if these efforts decreased the number of dead and diseased wild birds. Our study demonstrates one potential approach to minimize future botulism outbreaks among wild birds and their habitats.