The Keio Journal of Medicine
Online ISSN : 1880-1293
Print ISSN : 0022-9717
ISSN-L : 0022-9717
68 巻, 1 号
選択された号の論文の4件中1~4を表示しています
REVIEW
  • Jumpei Sasabe, Masataka Suzuki
    原稿種別: REVIEW
    2018 年 68 巻 1 号 p. 1-16
    発行日: 2018年
    公開日: 2019/03/25
    [早期公開] 公開日: 2018/05/22
    ジャーナル フリー HTML

    Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.

ORIGINAL ARTICLE
  • Yuka Yamada, Takashi Yurikusa, Kohei Furukawa, Yasuhiro Tsubosa, Masah ...
    原稿種別: ORIGINAL ARTICLE
    2018 年 68 巻 1 号 p. 17-25
    発行日: 2018年
    公開日: 2019/03/25
    [早期公開] 公開日: 2018/10/06
    ジャーナル フリー HTML

    Radical esophagectomy for thoracic esophageal cancer is invasive and frequently results in postoperative pulmonary complications. Postoperative pneumonia is the most common such complication and affects hospital mortality and survival rates. Oral care has been very effective in reducing pneumonia. In Japan, preoperative professional oral care is highly recommended. However, there are few studies on the effect of preoperative improvements in oral hygiene as a result of intervention on the incidence of postoperative pneumonia. The primary end-point of this retrospective study was the incidence of postoperative pneumonia after radical esophagectomy. The oral health levels of 46 patients were individually categorized, and then patients were grouped according to whether they maintained or improved their oral hygiene. At the first dental examination, oral health levels were classified as good in 22 patients and bad in 24. Of the 46 patients studied, 39 patients maintained or improved their oral hygiene (good control group), whereas 7 showed no improvement (bad control group). Postoperative pneumonia occurred in eight patients: four in the good control group and four in the bad control group. Statistical analysis with postoperative pneumonia as a dependent variable showed a significant effect of oral hygiene improvement on the incidence of pneumonia. Logistic regression analysis with this factor as an independent variable demonstrated that the risk of postoperative pneumonia was reduced in the good control group (OR 0.086, 95% CI 0.014–0.529). Therefore, preoperative professional oral care may improve oral hygiene and oral health, which may in turn reduce the incidence of postoperative pneumonia.

ABSTRACTS
  • Feng Zhang
    2019 年 68 巻 1 号 p. 26
    発行日: 2019年
    公開日: 2019/03/25
    ジャーナル フリー

    Many powerful molecular biology tools have their origin in nature. From restriction enzymes to CRISPR-Cas9, microbes utilize a diverse array of systems to get ahead evolutionarily. We are exploring this natural diversity through bioinformatics, biochemical, and molecular work to better understand the fundamental ways in which microbes and other living organisms sense and respond to their environment and as possible to develop these natural systems as molecular tools and to improve human health. Building on our demonstration that Cas9 can be repurposed for precision genome editing in mammalian cells, we look for novel CRISPR-Cas systems that are different and may have other useful properties. This led to the discovery of several new CRISPR systems, including the CRISPR-Cas13 family that target RNA, rather than DNA. We have developed a toolbox for RNA modulation based on Cas13, including methods for precision base editing, adding to our robust toolbox for DNA based on Cas9 and Cas12. We are expanding our biodiscovery efforts to search for new microbial proteins that may be adapted for applications beyond genome and transcriptome modulation, capitalizing on the growing volume of microbial genomic sequences. We are particularly interested in identifying new therapeutic modalities and vehicles for delivering them into patients. We hope that additional robust tools and delivery options will further accelerate research into human disease and open up new therapeutic possibilities.

  • Masashi Yanagisawa
    2019 年 68 巻 1 号 p. 27
    発行日: 2019年
    公開日: 2019/03/25
    ジャーナル フリー

    Although sleep is a ubiquitous behavior in animal species with well-developed central nervous systems, many aspects in the neurobiology of sleep remain mysterious. Our discovery of orexin, a hypothalamic neuropeptide involved in the maintenance of wakefulness, has triggered an intensive research examining the exact role of the orexinergic and other neural pathways in the regulation of sleep/wakefulness. The orexin receptor antagonist suvorexant, which specifically block the endogenous waking system, has been approved as a new drug to treat insomnia. Also, since the sleep disorder narcolepsy-cataplexy is caused by orexin deficiency, orexin receptor agonists are expected to provide mechanistic therapy for narcolepsy; they will likely be also useful for treating excessive sleepiness due to other etiologies.

    Despite the fact that the executive neurocircuitry and neurochemistry for sleep/wake switching has been increasingly revealed in recent years, the mechanism for homeostatic regulation of sleep, as well as the neural substrate for “sleepiness” (sleep need), remains unknown. To crack open this black box, we have initiated a large-scale forward genetic screen of sleep/wake phenotype in mice based on true somnographic (EEG/EMG) measurements. We have so far screened >8,000 heterozygous ENU-mutagenized founders and established a number of pedigrees exhibiting heritable and specific sleep/wake abnormalities. By combining linkage analysis and the next-generation whole exome sequencing, we have molecularly identified and verified the causal mutation in several of these pedigrees. Biochemical and neurophysiological analyses of these mutations are underway. Since these dominant mutations cause strong phenotypic traits, we expect that the mutated genes will provide new insights into the elusive pathway regulating sleep/wakefulness. Indeed, through a systematic cross-comparison of the Sleepy mutants and sleep-deprived mice, we have recently found that the cumulative phosphorylation state of a specific set of mostly synaptic proteins may be the molecular substrate of sleep need.

feedback
Top