Japanese Journal of Physical Fitness and Sports Medicine
Online ISSN : 1881-4751
Print ISSN : 0039-906X
ISSN-L : 0039-906X
Volume 16, Issue 3
Displaying 1-3 of 3 articles from this issue
  • Part 8
    Y. Ohyama
    1967 Volume 16 Issue 3 Pages 57-68
    Published: September 01, 1967
    Released on J-STAGE: September 30, 2010
    JOURNAL FREE ACCESS
    It is supposed that, through considering the former results comprehensively, for promoting the flexibility, it is important to make the unfoldness of the extension sides of the disci intervertebrales large, and also it is needed to develop the muscular strength and the elasticity of extensor-muscle. Then, taking these factors into account, the gymnastic training that the author designed was given to the subjects. And the experimental study was tried to test whether such training develops the flexibility or not.
    A. Statistical results ;
    1. By giving the gymnastic training every day for about more than two weeks, the flexibility (trunk flexion, extension, side-ward bend) are developed.that is;
    a. The amount of development of flexibility in the traine1 group was significant statistically but not significant in the control group, at significance level 0.05.
    b. The mean of the trained group after training for two weeks was higher than that of the control group. The difference between the two means were significant statistically at significance level 0.05
    c. In the trained group after training all the subjects have showed the development of flexibility but only 40% of subjects showed its development in the control group.
    B. Electromyographical results ;
    a. The electromyographic discharge of post-training has showed more increase remarkably than the EMG of pre-training. Furthermore, it was observed powerful and thick
    b. In the EMG of post-training, the joining of new secondary movers and the pause of the antagonist discharge were come out. And then the coordination among the connected muscles for flexibility and the intensification of function of the connected muscles were observed in the EMG after the gymnastic training.
    Download PDF (3300K)
  • —Autour des marches du temps de la nage libre—
    Hideo Kubo
    1967 Volume 16 Issue 3 Pages 69-77
    Published: September 01, 1967
    Released on J-STAGE: September 30, 2010
    JOURNAL FREE ACCESS
    Généralement parlant l'énergie fournie, E, pendant un jeu sportif est représentée par la fonction de la rapidité, ν. C'est-à-dire
    E=kνn
    D'ordinaire, on estime l'indice n de l'oxygène consommé pendant le mouvement. La valeur numérique de n semble être instable. Cette instabilité peut être attribuée à la difficulté de la mesure pratique de l'oxygène utilisé, particulierement dans le cas de la nage.
    Nous voulons ainsi rechercher quelques relations pour obtenir n sans rapport avec la mesure directe de l'oxygène.
    Nous avons obtenu une relation entre la rapidité vi moyenne dans chaque division i de la cours totale, par laquelle on peut remplacerle moyen de la mesure d'oxygéne, une des conditions pour résoudre l'équation d'énergie,
    Σiνilnvi = v0lnv0
    Posant ni=1+xi et appliquant la rélation dessus posée, il en resulte
    Σixi=Σiln(lnvi/lnvo)/ln(vi/vo)
    x est représentée par la formule empirique x=v (a+1) ⋅vblnv
    oú a=4.716, b= -5.5129
    La puissance P est définie par
    P=v (2+x)
    Sous la condition dP/dv=0, on obtient
    vlimite=1.8388m/sec.
    A présent, it n'est pas certain si Vilmite ci-dessus donne une signification biologi-que, par exemple, changement du mécanisme métabolique de décharge de l'énergie ou décriossance de la résistance hydrodynamique. Ou bien it se peut que ce ne soit là qu'une simple trace de procédés mathématiques. Il ne nous reste donc plus qu'à 1'avancement des vitesses records.
    Nous nous permettons de dire que nous avons l'honneur dédcdier cet article, pour le féliciter d'avoir été décoré, à Monsieur Saburo Noda, Recteur du collége universitaire de l'Education physique et de Sport d'Osaka, un des précurseurs de l'enseignement publique elementaie et avancé,
    Download PDF (655K)
  • Takashi Takemiya
    1967 Volume 16 Issue 3 Pages 78-90
    Published: September 01, 1967
    Released on J-STAGE: September 30, 2010
    JOURNAL FREE ACCESS
    1) A method of recording electrocardiograms during the performance of active hands-tanding exercise, passive handstanding, upright standing and upright standing with load were described. Data obtained from 19 normal healthy subjects were analyzed.
    2) For the analysis of exercise electrocardiogram, the most important is to grasp the characteristics of ECGs of the individual subjects. The control examination was made on the tracings of electrocardiographic changes in wave patterns, amplitudes, time intervals and electric heart axis due to four different lying postures (supine, prone, leftside, and right side) and to the respiratory movement by standard limb lead and special lead (MII) . Lead MII (modified standard lead II: Manubrium sterni↔left leg) was used throughout the expe-riments. The paper speed was 50mm per second.
    3) During active handstanding exercise, the time interval (sec) shortened quickly in T-P and slowly in P-Q and Q-T intervals. A slight decrease in the amplitude of the T-wave were observed.
    4) During passive handstanding prolongation of R-R interval was observed. At the angle of ∠70° shifted from the horizontal prolongation of R-R (T-P) interval atarted, but no change in P-Q and Q-T intervals occurred. T-wave showed slight increasse in passive handstan-ding immediately after body shift, but no markable change appeared during the period of loading.
    5) During upright standing and upright standing with load shortening of R-R interval were observed, but no change in P-Q and Q-T intervals occurred. Amplitude of each wave did not change during the period of loading.
    6) It is suggested that during active handstanding increase in sympathetic activity accelerates the cardiac rate, on the other hand, increase in parasympathetic activity mediated through the buffer nerve system (sinus caroticus, aortic nerve) decelerates it during passive handstanding. It appears to be general that autonomic nervous system plays an important role in the static exercise.
    Download PDF (1546K)
feedback
Top