Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Volume 41 , Issue 3
Showing 1-23 articles out of 23 articles from the selected issue
Current Topics - Cutting-Edge Studies Using Artificial Membranes
Current Topics: Reviews
  • Kingo Takiguchi, Masahito Hayashi, Yuki Kazayama, Taro Toyota, Yoshie ...
    2018 Volume 41 Issue 3 Pages 288-293
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    For the development of artificial cell-like machinery, liposomes encapsulating cytoskeletons have drawn much recent attention. However, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons. We succeeded in reversibly changing the shape of cell-sized giant vesicles by controlling the polymerization/depolymerization state of cytoskeletal microtubules that were encapsulated in the vesicles using pressure changes. The result indicates that it is possible to manipulate artificial cell models composed of molecules such as lipids and proteins. The findings obtained in this study will be helpful in clarifying the details of cooperation between cytoskeletal dynamics and morphogenesis of biological membranes and in improving the design and construction of further advanced artificial cell-like machinery, such as drug-delivery systems. In addition, the experimental system used in this study can be applied to research to elucidate the adaptive strategy of living organisms to external stimuli and extreme conditions such as osmotic stress and high-pressure environments like the deep sea.

    Graphical Abstract Fullsize Image
  • Takahiro Muraoka
    2018 Volume 41 Issue 3 Pages 294-302
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    A multipass transmembrane (MTM) structure is prevalent in membrane proteins for a wide range of functions. Typically, the MTM structure is constructed of bundled multiple α-helices spanning the membrane which are connected by flexible domains. One characteristic feature of MTM proteins is dynamic functions such as stimuli responses and conformational changes. In this review, the development of synthetic molecules forming an MTM structure in membranes is highlighted. The MTM folded structure is developed using an amphiphilic molecular design with a multiblock strategy between rigid hydrophobic components and flexible hydrophilic units. Such synthetic amphiphiles not only form the MTM structure by folding but also self-assemble to construct supramolecular ion channels. An elaborated molecular design of the MTM structure with a ligand-binding pocket allows for ligand-gated regulation of ion transport. Light-triggered membrane deformation for vesicle budding is also demonstrated.

    Graphical Abstract Fullsize Image
  • Shigetoshi Oiki, Masayuki Iwamoto
    2018 Volume 41 Issue 3 Pages 303-311
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Fluidity and mosaicity are two critical features of biomembranes, by which membrane proteins function through chemical and physical interactions within a bilayer. To understand this complex and dynamic system, artificial lipid bilayer membranes have served as unprecedented tools for experimental examination, in which some aspects of biomembrane features have been extracted, and to which various methodologies have been applied. Among the lipid bilayers involving liposomes, planar lipid bilayers and nanodiscs, recent developments of lipid bilayer methods and the results of our channel studies are reviewed herein. Principles and techniques of bilayer formation are summarized, which have been extended to the current techniques, where a bilayer is formed from lipid-coated water-in-oil droplets (water-in-oil bilayer). In our newly developed method, termed the contact bubble bilayer (CBB) method, a water bubble is blown from a pipette into a bulk oil phase, and monolayer-lined bubbles are docked to form a bilayer through manipulation by pipette. An asymmetric bilayer can be readily formed, and changes in composition in one leaflet were possible. Taking advantage of the topological configuration of the CBB, such that the membrane’s hydrophobic interior is contiguous with the surrounding bulk organic phase, oil-dissolved substances such as cholesterol were delivered directly to the bilayer interior to perfuse around the membrane-embedded channels (membrane perfusion), and current recordings in the single-channel allowed detection of immediate changes in the channels’ response to cholesterol. Chemical and mechanical manipulation in each monolayer (monolayer technology) allows the examination of dynamic channel-membrane interplay.

    Graphical Abstract Fullsize Image
Regular Articles
  • Koji Kimura, Kazuya Omura, Tetsuya Hoshino, Hiroyuki Takahashi, Masaha ...
    2018 Volume 41 Issue 3 Pages 312-318
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Sugammadex (SDX), a neuromuscular blocking-reversal agent, quickly reverses neuromuscular blockade induced by rocuronium (RCR). SDX dosage is set according to the state of neuromuscular blockade determined with a neuromuscular monitoring device. However, in clinical situations, such a devise is not frequently used. Here, we report construction of a method for theoretically setting SDX dose by which the optimum reverse time (RT) can be obtained for individual patients even when the device is not available. The subjects were 42 adult female patients who underwent laparoscopic surgery from 1 August 2015 to 31 March 2016, during which RCR and SDX were administered. We formulated an equation for theoretically calculating the RCR residual ratio (RR) in blood after SDX administration. Furthermore, we examined the relationship between RR and RT. Based on the results obtained, we developed a method for predicting RT using RR. We excluded 1 subject as the RT value was detected as an outlier in our analysis. Multiple regression analysis was performed using standard body weight, serum creatinine, total bilirubin, and RR as explanatory variables. The number of subjects with a prediction error of RT within ±1 min was 36 (87.8%) of 41 in multiple regression analysis. We could predict RT following SDX administration by using the RT prediction expression with RR obtained for subjects administered RCR during the surgery. Furthermore, our results suggest that the SDX dose able to achieve optimum RT may be set prior to surgery on the basis of the present methodology.

    Graphical Abstract Fullsize Image
  • Yohei Tatematsu, Haruhi Fujita, Hiroki Hayashi, Atsushi Yamamoto, Atsu ...
    2018 Volume 41 Issue 3 Pages 319-325
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and pain. In the present study, we examined the effects of celecoxib, a cyclooxygenase-2 (COX-2)-selective NSAID, on rat liver mitochondrial function. Celecoxib dose-dependently induced mitochondria swelling, which was not suppressed by cyclosporine A (CsA). The oxygen consumption rate in mitochondria-suspended solution was facilitated by the addition of celecoxib, and its uncoupling activity was observed. Celecoxib also suppressed SF6847-induced uncoupling, and appeared to exert inhibitory effects on the electron transport chain. Celecoxib suppressed the state 3 oxygen consumption rate in the presence of ADP. Protein release from the mitochondrial matrix was detected following the addition of celecoxib, and aldehyde dehydrogenase 2 (ALDH2) and hydroxymethylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) bands were confirmed in a Western blot analysis. On the other hand, protein release of cytochrome C (CytC), which is an inducer of apoptosis, from the intermembrane space was not observed. Celecoxib enhanced the membrane permeability of human erythrocytes and synthesized liposomes dose-dependently. It then induced the membrane-involving mitochondrial swelling and suppressed mitochondrial function.

    Graphical Abstract Fullsize Image
  • Yuanyuan Zhou, Yeon Jung Choi, Eunyeong Kim, Mun Hwan Oh, Hee Jae Shin ...
    2018 Volume 41 Issue 3 Pages 326-337
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    The purpose of this study was to investigate the pharmacokinetics and metabolism of streptochlorin and its derivative 5-hydroxy-2′-isobutyl streptochlorin (HIS) in mice. Plasma concentration of streptochlorin declined rapidly resulting in a high sustemic plasma clearance (CLp) (5.8±1.7 L/h/kg), a large volume of distribution (Vss) (1.4±0.9 L/kg) and a short half-life (t1/2) (0.4±0.1 h) after a single intravenous administration (5 mg/kg). Oral bioavailability (F) was 10.3±3.4% after a single oral administration (10 mg/kg). HIS also showed a rapid plasma decline with a high CLp (11.3±8.8 L/h/kg), a high Vss (0.8±1.0 L/kg) and a short t1/2 (0.070±0.004 h) following intravenous administration. It was not detected in plasma after oral administration. Metabolic stability studies using mouse liver microsomes and S9 fractions predicted a high hepatic clearance for both compounds, consistent with the in vivo data. Metabolite identification studies revealed three metabolic pathways for streptochlorin: monooxygenation, glucuronidation of the indole moiety and oxidative opening of the 4-chlorooxazole ring. HIS was metabolized via monooxygenation of the isobutyl chain and glucuronidation of the indole ring. These results may aid in structural optimization to mitigate the metabolic liability of streptochlorin.

    Graphical Abstract Fullsize Image
  • Masanori Tachikawa, Reiji Yokoyama, Shin-ichi Akanuma, Ken-ichi Hosoya
    2018 Volume 41 Issue 3 Pages 338-341
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Regulating γ-aminobutyric acid (GABA) uptake transport on the plasma membranes is required for its efficient clearance from the brain interstitial fluid. The purpose of this study was to clarify the assembly of taurine transporter (TauT/Slc6a6) and PSD-95/Disc-large/Zo-1 (PDZ) domain of Na+–H+ exchanger regulatory factor 1 (NHERF1) as a regulatory mechanism of TauT-mediated GABA transport activity. In vitro glutathione S-transferase (GST)-pull down assay and immunoblotting with anti-NHERF1 antibody revealed that NHERF1 protein was present in rat brain lysates as the binding protein of the GST-fusion TauT C-terminal protein with the PDZ-binding ETMM motif but not its corresponding deletion mutant lacking the motif. [3H]GABA uptake by TauT-NHERF1-coexpressing oocytes and TauT-singly expressing oocytes exhibited saturable kinetics with Michaelis–Menten constant values of 0.835±0.288 and 0.982±0.569 mM and a maximal transport velocity of 206±37 and 283±28 pmol/(h·oocyte), respectively. These results suggest that the assembly of TauT PDZ-binding motif and NHERF1 increases the maximal transport velocity of GABA rather than changes the affinity.

    Graphical Abstract Fullsize Image
  • Yukinobu Kodama, Waka Nishigaki, Tadahiro Nakamura, Shintaro Fumoto, K ...
    2018 Volume 41 Issue 3 Pages 342-349
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    We developed and optimized a novel gene delivery vector constructed electrostatically with an anionic biological component and a cationic biological component. Cationic binary complexes of plasmid DNA (pDNA) with novo-protamine sulfate as a medical product (PRT complexes) demonstrated high gene expression with minimal cytotoxicity, likely related with its total cationic charge. Subsequently, anionic compounds were added to the PRT complexes to form ternary complexes with neutral or anionic charges. Among the anionic compounds examined, chondroitin sulfate sodium (CS) as a medical product encapsulated the PRT complexes to produce stable ternary complexes (CS complexes) at charge ratios of ≥4 with pDNA. CS complexes exhibited high gene expression without cytotoxicity in mouse melanoma cell line, B16-F10 cells, in vitro. An inhibition study with endocytosis inhibitors suggested that PRT complexes were mainly taken up by caveolae-mediated endocytosis, and CS complexes were mainly taken up by clathrin-mediated endocytosis in B16-F10 cells. We found that CS complexes including pDNA encoding Oplophorus gracilirostris luciferase induced selective gene expression in the spleen after intravenous administration into ddY male mice. Thus, we successfully constructed useful gene vectors with biological components as medical products.

    Graphical Abstract Fullsize Image
  • Muhammad Farooq, Zainab Mohammed Al Marhoon, Nael Abu Taha, Almohannad ...
    2018 Volume 41 Issue 3 Pages 350-359
    Published: March 01, 2018
    Released: March 01, 2018
    [Advance publication] Released: December 16, 2017
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Isatin (1H-indole-2,3-dione) and many of its derivatives are reported to have pharmacological properties. In this study, we report the synthesis and biological activity of a new class of N-alkyl-isatin-3-iminobenzoic acid derivatives prepared via the condensation of N-alkyl isatin with 4-aminobenzoic acid by conventional, microwave, and ultrasonic methods. Microwave irradiation yielded the products in a shorter reaction time with higher yields and purities. The compounds were screened in zebrafish embryos, and also in three human cancer cell lines (MCF7, HepG2, and Jurkat) and one normal human cell line i.e., human foreskin cell line (HFF-1). Two compounds (3c, 3f) were found to be highly effective against hematopoiesis in live zebrafish embryo at 10 µM concentration. The developmental stage-dependent treatment indicated that these compounds interfered with the differentiation of hemangioblasts to hematopoietic cells in zebrafish embryos. The comparative screening of semaxanib (SU5416) (a known isatin derivatives), to compounds synthesized in this study, revealed the contrasting effects of these two classes of isatin derivatives on zebrafish hematopoiesis. Most of the N-alkyl-isatin-3-iminobenzoic acid derivatives were toxic on cancer and non-cancer tested human cells lines, however, the compounds 3c and 3f specifically affected the cell viability of Jurkat cells (human hematological cell line) with least IC50 values of 16.5 and 7.8 µM. The structure–activity relationship (SAR) analysis indicated that the substitution pattern of the isatin at the 5-position was vital for activity. The in vivo and in vitro biological activities of these compounds suggested their potential use as pharmaceutical compounds for human leukemia treatment.

    Graphical Abstract Fullsize Image
  • Pattama Wongsirisin, Sirikan Limpakan Yamada, Supachai Yodkeeree, Wani ...
    2018 Volume 41 Issue 3 Pages 360-367
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Acquired resistance is a major reason for poor clinical outcomes in cancer chemotherapy patients. The aim of this study was to determine the sensitivity to anticancer drugs and to identify the alterations of DNA repair and drug transporter in a model of primary culture obtained from pre- and post-platinum-based anticancer treatments in nine Thai gastric cancer patients. Ex vivo sensitivity to anti-cancer drugs (cisplatin, oxaliplatin, 5-fluorouracil (5-FU) and irinotecan) was analysed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of the drug transporter (multidrug resistance-associated protein 1 (MRP1), P-glycoprotein (P-gp)) and DNA repair (X-ray cross-complementing gene 1 (XRCC1) and excision repair cross-complementing 1 (ERCC1)) were examined by RT-PCR. The IC50 to cisplatin and oxaliplatin of the cells obtained from gastric cancer patients after clinical drug treatments were administered to five patients (55.5%) revealed a significant increase when compared with prior treatments. The basal expression values of XRCC1, ERCC1 and MRP1 obtained from the treated patients were in correlation with those of IC50. Ex vivo platinum drug treatment of the primary culture obtained from naïve patients over seven days also revealed a significant increase in MRP1 (7/9), XRCC1 (4/9) and ERCC1 (4/9). These observations have also been observed in the KATOIII cell line. Clinical treatment by platinum-based anti-cancer drug can develop acquired drug resistance in Thai gastric cancer patients through upregulation in the expression of drug transporter MRP1 and DNA repair XRCC1 and ERCC1. In cell culture model, cisplatin-resistant gastric cancer cell line KATOIII/diamminedichloroplatinum (KATOIII/DDP) significantly increased the expression level of these genes when compared to its parental cells (KATOIII).

    Graphical Abstract Fullsize Image
  • Megumi Ueno, Ikuo Nakanishi, Ken-ichiro Matsumoto
    2018 Volume 41 Issue 3 Pages 368-373
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    A digitization approach to the time course of radiation-induced mouse leg contracture was proposed for quantifying the radiation effect on an individual living mouse. The shortening of the mouse leg length can be easily measured with a caliper/ruler to offer a very simple digitalized index of the radiation effect. Left hind legs of mice were irradiated with single dose of 32 Gy of 290 MeV carbon-ion beam using 0, 50, or 117 mm binary filter (BF). The right legs were used as a control. The lengths of both hind legs of the mice were measured using a digital caliper before irradiation and every week after irradiation. The degree of leg contracture, ΔSt, at the time point t was estimated by subtraction of the left irradiated leg length from the right control leg length. Equation was fitted on the daily time course of ΔSt, and two parameters, ΔSmax and Ts, were estimated. ΔStSmax×(1−exp(t/Ts)), where ΔSmax is the maximum degree of leg contracture, and Ts is time of leg contracture. The effect of carbon-ion irradiation on a living mouse was quantified by ΔSmax and Ts of the leg contracture, and then compared to that of X-rays. By 32 Gy irradiation, ΔSmax was largest for the BF117 experiment, followed by X-ray~BF50>BF0. Ts was shortest for the BF50 experiment, while other irradiation conditions give similar Ts. A logarithmic function was successfully repurposed for the evaluation of radio-biological response.

    Graphical Abstract Fullsize Image
  • Yukino Kobayashi, Ami Oguro, Susumu Imaoka
    2018 Volume 41 Issue 3 Pages 374-382
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane), one of the phenolic compounds widely used in the manufacture of plastic and epoxy resins, is known as an endocrine disruptor. In a previous study, we found that BPA induced hypoxia inducible factor-1alpha (HIF-1alpha) degradation by dissociation from heat shock protein 90 (Hsp90). In this study, to investigate the structural requirements for degradation of HIF-1alpha, we estimated the effect of BPA derivatives (BPE, BPF, BPB, Dimethyl butylidene diphenol (DMBDP), Ethyl hexylidene diphenol (EHDP), Bishydroxyphenyl cyclohexane (BHCH), and Methyl benzylidene bisphenol (MBBP)) on HIF-1alpha protein degradation, using human hepatocarcinoma cell line, Hep3B. BPB, DMBDP, BHCH, and MBBP decreased HIF-1alpha protein levels more efficiently than BPA, but BPE, BPF, and EHDP did not affect HIF-1alpha protein levels. BPA degraded HIF-1alpha even in the presence of MG132, a proteasome inhibitor. In this study, we found that ammonium chloride (NH4Cl), a lysosomal enzyme inhibitor, efficiently restored the decrease in HIF-1alpha protein levels by BPA. Recent studies indicated that HIF-1alpha is degraded by the lysosomal pathway as well as the proteasomal pathway. Therefore, we investigated the levels of heat shock cognate 70 kDa protein (HSC70) protein after treatment with BPA. We found that BPA induced HSC70 protein and overexpression of HSC70 enhanced HIF-1alpha degradation in Hep3B cells. These results suggested that BPA causes the degradation of HIF-1alpha by induction of HSC70, leading lysosomal degradation of HIF-1alpha.

    Graphical Abstract Fullsize Image
  • Misa Hayashi, Kumi Futawaka, Midori Matsushita, Mayuko Hatai, Noriko Y ...
    2018 Volume 41 Issue 3 Pages 383-393
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Cigarette smoke contains over 4800 compounds, including at least 200 toxicants or endocrine disruptors. Currently, effects of cigarette smoke on thyroid hormone (TH) levels remains to be clarified. Here, we demonstrate that cigarette smoke extract (CSE) possesses thyroid hormone properties and acts synergistically as a partial agonist for thyroid hormone receptors (TRs) in the presence of TH. In transient gene expression experiments, CSE stimulated transcriptional activity with TH in a dose-dependent manner. Stimulatory effects were observed with physiological TH concentrations, although CSE did not activate TRs without TH. CSE (5%) dissolved in phosphate-buffered saline (PBS) supplemented with 1 nM TH was approximately comparable to 3.2±0.1 and 2.3±0.2 nM of TRα1 and TRβ1, respectively. To illustrate probable mechanisms of the CSE agonistic activity, effects on TR mediated transcriptional functions with cofactors were investigated. With a mammalian two-hybrid assay, CSE recruited the nuclear coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC1) to the TR. Unsaturated carbonyl compounds, acrolein, crotonaldehyde, and methyl vinyl ketone, representative constituents of CSE, retained such agonistic properties and possibly contributed to stimulatory effects. The results suggest that CSE recruits a transcriptional activator and may reinforce TH binding to the TR additively, resulting in gene expression. CSE partially agonizes TH action and may disturb the function of various nuclear hormone receptor types and their cofactors to disrupt the physiological processes.

    Graphical Abstract Fullsize Image
  • Tomofumi Yatsu, Taichi Kusakabe, Keisuke Kato, Yoshio Inouye, Kiyomits ...
    2018 Volume 41 Issue 3 Pages 394-398
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Androgens are key regulators that play a critical role in the male reproductive system and have anabolic effects on bone mineral density and skeletal muscle mass. We have previously reported that YK11 is a novel selective androgen receptor modulator (SARM) and induces myogenic differentiation and selective gene regulation. In this study, we show that treatment of YK11 and dihydrotestosterone (DHT) accelerated cell proliferation and mineralization in MC3T3-E1 mouse osteoblast cells. Further, YK11-treated cells increased osteoblast specific differentiation markers, such as osteoprotegerin and osteocalcin, compared to untreated cells. These observations were attenuated by androgen receptor (AR) antagonist treatment. To clarify the effect of YK11, we investigated rapid non-genomic signaling by AR. The phosphorylated Akt protein level was increased by YK11 and DHT treatment, suggesting that YK11 activates Akt-signaling via non-genomic signaling of AR. Because it is known Akt-signaling is a key regulator of androgen-mediated osteoblast differentiation, YK11 has osteogenic activity as well as androgen.

    Graphical Abstract Fullsize Image
  • Kyungae Jo, Hyeon-Son Choi, SangDuck Jeon, Chang-Won Ahn, Hyung Joo Su ...
    2018 Volume 41 Issue 3 Pages 399-408
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    The sleep-promoting effects of the water extract of Nelumbo nucifera seeds (NNE) were investigated in an invertebrate model. The effects of NNE on the subjective nighttime activity, sleep episodes, and sleep time were determined using Drosophila melanogaster and locomotor activity monitoring systems in basal and caffeine-induced arousal conditions. The movements of fruit flies were analyzed using the Noldus EthoVision-XT system, and the levels of neuromodulators were analyzed using HPLC. Expression of neuromodulator receptors was analyzed using real-time PCR. NNE was shown to contain neurotransmission-related components; γ-aminobutyric acid (GABA) (2.33±0.22 mg/g), tryptophan (2.00±0.06 mg/g), quinidine (0.55±0.33 mg/g), and neferine (0.16±0.01 mg/g). The total activity of flies during nighttime was decreased by 52% with 1.0% NNE treatment. In the individual and collective conditions, the subjective nighttime activities (45/38%) and sleep bouts (20/14%) of flies was significantly decreased with NNE treatment, while total sleep times (10/27%) were significantly increased. This sleep-promoting effect is more pronounced in caffeine-treated conditions; the nighttime activity of flies was reduced by 53%, but total sleep time was increased by 60%. Our video-tracking analysis showed a significant decrease of the moving distance and velocity of flies by NNE. This NNE-mediated sleep-promoting effect was associated with up-regulation of GABAA/GABAB and serotonin receptors. The NNE-mediated increase of GABA content was identified in flies. These results demonstrate that NNE effectively promotes sleep in flies by regulating the GABAergic/serotonergic neuromodulators, and could be an alternative agent for sleep promotion.

    Graphical Abstract Fullsize Image
  • Daisuke Furushima, Hiroshi Yamada, Michiko Kido, Yuko Ohno
    2018 Volume 41 Issue 3 Pages 409-418
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Improvement in patient waiting time in dispensing pharmacies is an important element for patient and pharmacists. The One-Dose Package (ODP) of medicines was implemented in Japan to support medicine adherence among elderly patients; however, it also contributed to increase in patient waiting times. Given the projected increase in ODP patients in the near future owing to rapid population aging, development of improved strategies is a key imperative. We conducted a cross-sectional survey at a single dispensing pharmacy to clarify the impact of ODP on patient waiting time. Further, we propose an improvement strategy developed with use of a discrete event simulation (DES) model. A total of 673 patients received pharmacy services during the study period. A two-fold difference in mean waiting time was observed between ODP and non-ODP patients (22.6 and 11.2 min, respectively). The DES model was constructed with input parameters estimated from observed data. Introduction of fully automated ODP (A-ODP) system was projected to reduce the waiting time for ODP patient by 0.5 times (from 23.1 to 11.5 min). Furthermore, assuming that 40% of non-ODP patients would transfer to ODP, the waiting time was predicted to increase to 56.8 min; however, introduction of the A-ODP system decreased the waiting time to 20.4 min. Our findings indicate that ODP is one of the elements that increases the waiting time and that it might become longer in the future. Introduction of the A-ODP system may be an effective strategy to improve waiting time.

    Graphical Abstract Fullsize Image
  • Tsuyoshi Yamamoto, Hirofumi Nakano, Kazuro Shiomi, Kiyofumi Wanibuchi, ...
    2018 Volume 41 Issue 3 Pages 419-426
    Published: March 01, 2018
    Released: March 01, 2018
    [Advance publication] Released: December 22, 2017
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Reactive oxygen species (ROS) generated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox)1 mediate cellular signalings involved in normal physiological processes, and aberrant control of Nox1 has been implicated in the pathogenesis of various diseases. Therefore, Nox1 could have great potential as a therapeutic target. Here, we identified a novel Nox1 inhibitor, NOS31 secreted from Stretomyces sp. and analyzed its chemical structure. Furthermore, NOS31 was found to selectively inhibit Nox1-mediated ROS generation, with only a marginal effect on other Nox isoforms (Nox2–5) and no ROS scavenging activity. This compound blocked both Nox organizer 1 (NOXO1)/Nox activator 1 (NOXA1)-dependent and phorbol 12-myristate 13-acetate-stimulated Nox1-mediated ROS production in colon cancer cells. NOS31 inhibited the proliferation of several colon carcinoma and gastric cancer cell lines that upregulate the Nox1 system, whereas it had no appreciable effect on normal cells with low levels of Nox1. The finding suggests that NOS31 is a unique, potent Nox1 inhibitor of microbial origin and raises its possibility as a therapeutic agent for inhibiting gastrointestinal cancer cell growth.

    Graphical Abstract Fullsize Image
    Editor’s picks

    NADPH oxidase (Nox) isozymes are implicated in the diseases associated with oxidative stress, and search of their selective inhibitors has been a focus of attention. By screening microbial metabolites, Nakano and colleagues identified a novel Nox1 inhibitor (NOS31) produced from actinomyces. NOS31 inhibited Nox1-mediated hydrogen peroxide production with high Nox1 selectivity and suppressed proliferation of colon and gastric cancer cells that up-regulate Nox1. Thus, NOS31 may have the therapeutic potential for treating cancer involving the over-activation of Nox1.

  • Gaofeng Sheng, Jinlin Zhang, Shengfeng Gao, Yuanyuan Gu, Bo Jiang, Qiu ...
    2018 Volume 41 Issue 3 Pages 427-434
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Patients with Alzheimer’s disease (AD) always have cognitive impairments. In this study we investigated whether 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) has improvements on cognitive dysfunction. The scopolamine model of dementia was used to investigate the anti-amnesic activities of SKF83959, and then, Western blotting and pharmacological inhibitor were used to assay the anti-amnesic mechanisms of SKF83959. It was found that SKF83959 administration significantly improved the scopolamine-induced memory impairments in the passive avoidance task, Y-maze test, and Morris water maze task. Moreover, SKF83959 treatment significantly antagonized the down-regulating effects of scopolamine on brain-derived neurotrophic factor (BDNF) signaling cascade in the hippocampus, but not cortex. Importantly, the usage of K252a, a selective inhibitor of tyrosine kinase B (TrkB), significantly attenuated the protective effects of SKF83959 in the scopolamine model. Collectively, this study shows that SKF83959 has beneficial effects in the scopolamine model of dementia by modulation of hippocampal BDNF signaling, implying a novel and potential therapeutic agent for treating dementia in AD.

    Graphical Abstract Fullsize Image
  • Takashi Ito, Yukiko Nakanishi, Noriko Yamaji, Shigeru Murakami, Stephe ...
    2018 Volume 41 Issue 3 Pages 435-439
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    It has been identified that skeletal muscle is an endocrine tissue. Since skeletal muscle aging affects not only to muscle strength and function but to systemic aging and lifespan, myokines secreted from skeletal muscle may be crucial factors for intertissue communication during aging. In the present study, we investigated the expression of myokines associated with skeletal muscle aging in taurine transporter knockout (TauTKO) mice, which exhibit the accelerated skeletal muscle aging. Among transforming growth factor (TGF)-beta family genes, only growth and differentiation factor 15 (GDF15) was markedly higher (>3-fold) in skeletal muscle of old TauTKO mice compared with that of either young TauTKO mice or old wild-type mice. Circulating levels of GDF15 were also elevated in old TauTKO mice. An elevation in circulating GDF15 was also observed in very old (30-month-old) wild-type mice, while skeletal GDF15 levels were normal. The treatment of cultured mouse C2C12 myotubular cells with aging-related factors that mediate cellular stresses, such as oxidative stress (hydrogen peroxide) and endoplasmic reticulum stress (tunicamycin and thapsigargin), leads to an increase in GDF15 secretion. In conclusion, GDF15 is a myokine secreted by aging-related stress and may control aging phenotype.

    Graphical Abstract Fullsize Image
Notes
  • Meiyan Zhu, Akira Koibuchi, Hideyuki Ide, Hanae Morio, Minaka Shibuya, ...
    2018 Volume 41 Issue 3 Pages 440-444
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Liver sinusoidal endothelial cells (LSECs), which are specialized endothelial cells that line liver sinusoids, have been reported to participate in a variety of liver functions, such as blood macromolecule clearance and factor VIII production. In addition, LSECs play crucial roles in liver regeneration following acute liver injury, as well as the development and progression of liver diseases or drug-induced hepatotoxicity. However, the molecular mechanisms underlying their roles remain mostly unknown. Therefore, in order to contribute to the clarification of those mechanisms, herein we report on the development of a new immortalized human LSEC (HLSEC) line. To produce this cell line, two immortalized genes were introduced into the primary HLSECs, which eventually resulted in the establishment of the HLSEC/conditionally immortalized, clone-J (HLSEC/ciJ). Consistent with the two-immortalized gene expression, HLSEC/ciJ showed excellent proliferation activity. Additionally, the results of gene expression analyses showed that several LSEC (as well as pan-endothelial) marker mRNAs and proteins were clearly expressed in HLSEC/ciJ. Furthermore, we found that adherence junction proteins were localized at the cell border in the HLSEC/ciJ monolayer, and that the cells exhibited a tube-like structure formation property. Taken together, the results obtained thus far indicate that we have successfully immortalized HLSECs, resulting in creation of HLSEC/ciJ, a cell line that possesses infinite proliferation ability while retaining possession of at least some HLSEC features. We believe that the HLSEC/ciJ have the potential to provide a valuable and unlimited alternative source of HLSECs for use in liver/LSEC physiology/pathophysiology, pharmacology, and toxicology studies.

    Graphical Abstract Fullsize Image
  • Hanae Morio, Yuchen Sun, Manami Harada, Hideyuki Ide, Osamu Shimozato, ...
    2018 Volume 41 Issue 3 Pages 445-449
    Published: March 01, 2018
    Released: March 01, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA is a variant isoform of the liver-type OATP1B3. Because Ct-OATP1B3 mRNA shows an excellent cancer-specific expression profile in colorectal cancer (CRC), and that its expression levels are associated with CRC prognosis, it holds the potential to become a useful CRC detection and diagnosis biomarker. While the potential is currently justified only at the tissue level, if existence of Ct-OATP1B3 mRNA in CRC-derived extracellular vesicles (EVs) is validated, the findings could enhance its translational potential as a CRC detection and diagnosis biomarker. Therefore, this study aims at proving that Ct-OATP1B3 mRNA exists in CRC-derived EVs, and can be detected using serum specimens. To examine the possibility of Ct-OATP1B3 mRNA being existed in extracellular milieu, we isolated EVs from the human CRC (HCT116, HT-29, and SW480) cell lines, and prepared their cDNAs. The RT-PCR results showed that Ct-OATP1B3 mRNA was clearly present in EVs derived from the human CRC cell lines. Then, in order to further explore the possibility that Ct-OATP1B3 mRNA in CRC-derived EVs can be detected in serum, we isolated serum EVs derived from human CRC xenograft mice, and then performed RT-PCR. The results showed that Ct-OATP1B3 mRNA could be found in all serum EV and CRC tissue samples of the mice examined. Collectively, our findings, which show that Ct-OATP1B3 mRNA exists in EVs and can be detected in (at least) mouse serum, strengthen the potential use of Ct-OATP1B3 mRNA as a serum-based CRC biomarker.

    Graphical Abstract Fullsize Image
Errata
feedback
Top