Archivum histologicum japonicum
Print ISSN : 0004-0681
Volume 11, Issue 2
Displaying 1-9 of 9 articles from this issue
  • Shinzi OKAMOTO
    1956Volume 11Issue 2 Pages 165-193
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    With mature male mammals as test animals (rats, mice, rabbits and dogs) and by employing the aldehyde-fuchsin method, the substances produced by the hypothalamo-hypophyseal neurosecretory system are investigated and the superior staining affinities of the aldehyde-fuchsin method to the CHP method is confirmed. Pathway of neurosecretory granules are traced and an attempt is made to reveal the fiber connection, especially those between the neurosecretory nerve nuclei of the hypothalamus and the neurohypophysis.
    1. There are fibers (tractus paraventriculo-hypophyseus) reaching from the nucleus paraventricularis directly to the neurohypophysis. These fibers find their way to the dorsal side of the chiasma opticum or the tractus opticus, pass along in close proximity to each part of the nucleus supraopticus but independently of them and enter the median eminence from all its sides, especially from its rostral and lateral sides.
    2. There is no pathway of neurosecretory granules in certain fixed areas (A, A1, A2 and A3) around the 3rd ventricle.
    3. There are fibers reaching from the nucl. paraventricularis directly to each part of the nucl. supraopticus (the pars dorsolateralis, ventromedialis and tangentialis).
    4. Ther are fibers (tr. supraoptico hypophyseus) reaching from each part of the nucl. supraopticus directly to the neurohypophysis and there is a pathway of secretory granules leading from the pars dorsolateralis either to the pars ventromedialis or to the pars tangentialis.
    5. Neither the tr. paraventriculo-hypophyseus nor the tr. supraoptico-hypophyseus is detectable in the form of a fiber bundle. The fibers are spread out expansively.
    6. In rats and mice, there is a pathway of neurosecretory granules leading from the pars dorsolateralis of the nucl. supraopticus to the pars ventromedialis or the pars tangentialis by way of the ventral side of the chiasma opticum and the origin of the tractus opticus.
    7. A group of neurosecretory cells is detected running through the chiasma opticum in a line or two in the direction of its dorso-ventral side and the granules secreted by them are in connection with those which descend from the nucl. paraventricularis.
    8. Secretory granules intrude directly into the vascular system at the nucl. paraventricularis, the nucl. supraopticus, the median eminence and the neurohypophysis and into the 3rd ventricle at the nucl. paraventricularis and the median eminence.
    9. Finding obtained from each of the test animals, -rats, mice, rabbits and dogs, - are almost in perfect agreement.
    Download PDF (4876K)
  • Shigeyoshi HATAKEYAMA
    1956Volume 11Issue 2 Pages 195-211
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The human mesosalpinx represents a duplicature of the peritoneum and chiefly consists of smooth muscle tissue containing blood vessels spreading out into the oviduct. The histological relation between the mesosalpinx and the oviduct is a similar one to that between the mesometrium and the uterus. The muscle fibres in it run oftener longitudinally, but not a small number of them are oriented diagonally or transversely. The tubules of the epoöphoron consist in small canals lined by a simple epithelium surrounded by well-developed circular or longitudinal smooth muscle bundles.
    The oviduct is constructed of a serosa, a subserosa, a musscularis and a mucosa, the relative thickneses of these layers differing by positions. The muscularis can be divided into the outer and the inner layers with the SCHRÖDER's so-called blood vessel layer between them. The median layer rich in blood vessels may be taken to correspond to the stratum vasculare, the middle layer of the muscularis of the uterus, the outer layer to the stratum perivasculare uteri and the tunica muscularis of the oviduct known from olden times to the stratum submucosum of the uterus.
    The mucosa of the oviduct consists of a thin propria of delicate connective tissue containing spindle-formed fibrocytes and a simple epithelium, of which the cells are either ciliated or not, as in the epithelium of the uterus. The only difference lies in that well-developed mucous folds are found in the mucosa of the oviduct.
    Thus, the histological structure of the oviduct, except in the smallness of its size, is the same with that of the uterus-a similarity that may be easy to understand when we recall the identical embryological origin of the two organs. The none too rare frequency of salpingocyesis also is sufficient to suggest the similar structure of these organs.
    The nerve bundles distributed to the oviduct come first into the blood vessel layer of the mesosalpinx. These bundles consist mainly of vegetative fibres but contain a small number of sensory fibres too. They send in their courses in the blood vessel layer many fine branches out into the outer smooth muscle tissue. These branches undergo further ramification and mutual anastomosis, forming net-works of fine fibres, finally developing into full STÖHR's terminal reticula, which come into control by contact over the muscle fibres. Similar formations are observed in the muscle tissue of the tubules of the epoöphoron as well, and in the perivascular plexus around the blood vessels, in particular, the arteries, the vegetative fibres always ending in similar terminal reticula.
    Terminations of sensory fibres are found in the mesosalpinx. These consist in unbranched or simple branched terminations of fibres showing characteristic winding and change in size, and are formed around blood vessels, especially around small veins, and frequently in the muscle tissue and also in the subserosa. No corpuscular terminations were found in the mesosalpinx.
    The small nerve bundles going through the mesosalpinx into the oviduct first come into the stratum vasculare of the muscularis, branch out into fine rami, anastomose among themselves, and form rather poorly developed plexus, which contains no nerve cells. This plexus sends out numerous nerve branches both outwards into the stratum perivasculare and inwards into the stratum submucosum. Some of the nerve fibres run through the stratum submucosum further into the mucosa, to form illdeveloped plexus in its propria. The vegetative fibres in the muscularis as well as in the mucoua always end in terminal reticula, as was in the case of the mesosalpinx.
    Simple sensory terminations are frequently found in the oviduct too. SAKAGUCHI has detected such terminations only in the small blood vessels on extremely rare occasions, but in my study, I found them formed rather frequently not only in the blood vessels, but also in the muscle tissue
    Download PDF (2008K)
  • Rikio SUGIMOTO
    1956Volume 11Issue 2 Pages 213-237
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    At the lateral sides the upper lip of a cattle embryo passes over into haired skin, but at the front, it directly touches the hairless snout. As that in a human embryo, it can be divided into the cutaneous part, the transitional part and the mucous part, of which the transitional part can be subdivied into the zona glabula and the zona villosa.
    In the zona glabula, the epithelium is about 4 times as high as that of a human embryo, but the formation of papillae growing into the epithelium is much poorer in the former, being almost unnoticeable. In the zona villosa, the epithelium is about threefold in thickness as that in the zona glabula and is provided with villi on its surface. The papillar formation is here somewhat noticeable, though it is much poorer than in human embryo. In the mucous part of the lip, the epithelium is of the same nature as in the preceding, but in height, it diminishes rather abruptly here. This mucous part does not contain any labial glands in its submucosa, and as the ox has no incisors, this part directly goes over into the hard palate. The papillar formation in this part is very poor. too. The hard palate histologically is much simillar to the above parts of the lip, but in papillary formation, it is still inferior to the latter.
    The nasopalatine duct in a cattle embryo is fairly large in size. The epithelium lining it is of the same nature as that of the oral cavity, is very tall at its orificial part but loses in height as we go backwards and finally passes over into that of the nasal cavity. The propria is rich in branched glands and blood vessels. The epithelium here chiefly originates in that of the oral cavity, but the propra is comes perhaps from the nasal cavity.
    The JACOBSON's organ, a duct much smaller in size than the nasopalatine, opens out on the foremost end in the vicinity of the opening of the latter. The organ is lined in the anterior part by a thick light stratified flat epithelium and at the mid-part, by a thin stratified cylindrical epithelium. The former originates in the oral cavity and the latter in the nasal cavity. Accordingly, none of them belongs to the smell neuroepithelium. The propria is here also rich in glands and blood vessels and thus suggests its derivation from that of the nasal cavity.
    In the lip-edge of the cattle embryo, nerve plexus is found in powerful formation spreading from the submucosa into the propria- a formation most remarkable in the zona villosa. This plexus is found growing downwards across the mucous part of the lip into the hard palate. It consists of thick sensory and thin vegetative fibres, and the latter diffuse in the propria as terminal reticula.
    The sensory fibres are developers best, in the zona villosa, next in the pars mucosa labii and least in the zona glabula, in the order parallel with the development of the respective papillar formation. These fibres, beside ending in unbranched and branched terminations subepithelially, also pass over often into intraepithelial fibres. In the zona glabula, despite the nearly total lack of papillar formation, the number of sensory fibres is much larger than in that of a human embryo. These more often end subepithelially in unbranehed terminations. but sometimes also in simple branched terminations. The few intraepithelial fibres in this zone run only simple courses before ending unbranched.
    In the zona villosa, the sensory fibres in the poorly developed papillae are very limited in number and have only simple terminations, nearly as it was in the case with the zona glabula, but the intraepithelial fibres in this zone are more abundant. In the parts of the zone where the papillae are in more marked development, we find often rather complex branched terminations formed subepithelially by thick fibres, with terminal fibres showing change in size in their courses. Intraepithelial fibres are also in abundance here, in most cases of branched type
    Download PDF (3178K)
  • Tsunemoto NAKANISHI
    1956Volume 11Issue 2 Pages 239-265
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Eine kleine Menge des Blutes von Mensch, Maus, Meerschweinchen, Kaninchen, Rind, Pferd, Schaf, Hund und Katze wurde in einer Feuchtkammer aufbewahrt, und nach verschiedenen Zeitabständen wurde Ausstriche auf dem Objektglas hergestellt mit Formalindampf fixiert und mit schwach positiv geladenem lipoidfärbendem Viktoriablau gefärbt. Die Veränderungen der Blutplättchen sind selbst in ein und demselben Präparate verschieden stark. Es wurde also die mediane Veränderung als ein Standard betrachtet und vergleichend beobachtet.
    1. Die Größe der Blutplättchen ist in den sofort nach der Blutentnahme fixierten Ausstrichen: Katze>Mensch u. Pferd>Kaninchen> Hund>Meerschweinchen>Rind>Maus u. Schaf. Dabei beträgt der Durchmesser der Blutplättchen von Katze durchschnittlich 3.7μ, und der von Schaf und Maus 22μ. Die extra corpus aufbewahrten Plättchen vergrößern sich mit der Zeit und erreichen das Maximum in 20-30 Minuten nach der Blutentnahme, danach wird ihre Kontur mit dem Fortschreiten des Abbauvorganges undeutlich, bis schließlich die Plättchen in Stückchen zerfallen und sich auflösen.
    2. Die Stärke der Färbung der Blutplättchen mit schwach basischem lipoidfärbendem Viktoriablau ist in den gleich nach der Blutentnahme fixierten Präparaten: Pferd<Mensch<Rind u. Kaninchen<Schaf< Hund<Katze<Meerschweinchen<Maus. Wenn die Blutplättchen extra corpus aufbewahrt werden, ändert sich die obige Reihenfolge, wobei die Plättchen von Pferd immer verhältnismäßig schwach färbbar bleihen. Zwischen der bereits bekannten Blutgerinnungszeit verschiedener Tiere und der Veränderung der Färbbarkeit der Blutplättchen mit Viktoriablau gibt es keinen Zusammenhang.
    3. Das Granulomer der Plättchen wird mit dem schwach basischem lipoidfärbendem Viktoriablau stärker gefärbt als das Hyalomer. Das Hyalo- und Granulomer werden während der Aufbewahrung mit Viktoriablau vorübergehend stärker färbbar, und sind nach 5 Minuten am stärksten zu färben. Es wurde an den Blutplättchen von Mensch bestätigt, daß die Färbbarkeit mit schwach saurem lipoidfärbendem Irisolechtviolett BBN sich auch mit der Zeit verstärkt. Die Färbbarkeitszunahme muß also auf dem Freiwerden von Lipoid in den Plättchen beruhen. Die Färbbarkeit der Plättchen mit den beiden Farbstoffen wird aber dann mit ihrem weiteren Abbau wieder abnehmend.
    4. Das dipolhaltiges Lipoid färbende Viktoriablau und Irisolechtviolett BBN stellen in den Blutplättchen sehr feine Granula dar, dagegen treten durch die Färbung mit dem Neutralfett färbenden Sudan III nur einige grobe Tröpfchen oder Granula in den Plättchen auf. Das Lipoid und Neutralfett färbende Sudanschwarz B färbt nahezu in der gleichen Weise wie das Sudan III.
    5. Die Vakuolen entwickeln sich nicht nur im Hyalomer, sondern auch im Granulomer. Durch die Vermehrung und Vergrößerung der Vakuolen teilt sich das Granulomer in Stückchen, welch letztere weiler in Granula zerfallen.
    Download PDF (3492K)
  • Shigeko NEMOTO
    1956Volume 11Issue 2 Pages 267-282
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The nerve cells found in the semilunar ganglion of the dog are classifiable into large cells and small cells by size, and by the number of their nerve processes into unipolar, bipolar and multipolar cells.
    The unipolar cells in the canine semilunar ganglion can be classified into the simple type and the complex type cells, as found in human ganglia, but many were found to show a specific type not observable in the human counterpart.
    Simple type unipolar cells are chiefly found among the small cells, and have single nerve processes which run very simple intracapsular courses before running out of the capsule. The unipolar cells of complex type are usually large cells and their nerve processes run spiral courses at one of the poles of the cells and then emerge from the capsule. Such unipolar cells with their processes running intricate courses surrounding the cell bodies, as often found in man, are only very rarely found in the semilunar ganglion of the dog.
    The specific type of the unipolar cells in the canine semilunar ganglion seems to represent a variation of the complex type. In a cell of this type, the nerve process sends out some rami during its spiral course, which run back to the mother fibre to form quite irregular-formed windows of varying sizes. Since similar cells are found in the spinal ganglia of horses too (LENHOSSÉK), they are presumed to be present in the cerebrospinal ganglia of some non-human mammals.
    In nerve cells of any type, thick axis cylinders usually originate in large cells and thin cylinders in small ones, but exception are not rare. The axis cylinders of the unipolar cells divide into peripheral and central fibres by T or Y-shaped bifurcation, but no rule was found concerning their relative thicknesses. This applies also to the central and peripheral fibres of the bipolar and the multipolar cells equally well. The bifurcation of the axis cylinders of the unipolar cells generally occur without, but not rarely also within, the connective tissue capsules. The axis cylinders of the nerve cells of any type often send out thin collaterals.
    Bipolar cells too are found in the semilunar ganglion of the dog, though only in a very limited number. The formerly accepted theory that such bipolar cells represent infantile forms of unipolar cells has been refuted by YAMASHITA and MIKAMI of this laboratory, and my study also led me to deny such a hypothesis. The intracapsular courses of the two processes of such a bipolar cell are usually very simple in arrangement, that is, the cells are mostly of simple type, but sometimes, more complex-typed ones with spiral or fenestrated processes are found in existence.
    The multipolar cells in the semilunar ganglion of the dog are found in a larger number than in man, and in their formation, are sometimes quite dissimilar from those in the human ganglia. Namely, such common multipolar cells, simple fenestrated cells and nerve cells with endplates on their processes are very rare in the dog, but the majority of them consist in my so-called specific fenestrated cells with nerve processes running complex and peculiar courses.
    In such specific cells, their nerve processes emerge at varying distances on the surface of the cell bodies, come soon into mutual anastomosis to form a number of windows and then unite into single axis cylinders. These cells comprise those of simple and of complex types. In a simple-typed cell, the fenestration occurs at one of the poles of the nerve cells so that the formation is rather small and simple, but in a complex-typed cell, the nerve processes emerging at random distances from the cell surface make very variegated windows, before passing over into an axis cylinder generally running a winding course also peculiar to a cell of this type. Such specific multipolar cells of the simple type have been found also in the cerebrospinal ganglia of man and all other mammals
    Download PDF (1513K)
  • Kozo TANAKA
    1956Volume 11Issue 2 Pages 283-302
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    In cattle embryos, the bronchial tree of the bronchial duct system is very distinctly in formation already in the 3rd month, the large cartilaged bronchial branches branching out into the terminal and the respiratory bronchioli without cartilages through manifold ramification, and the latter turning into the short alveolar ducts and then into spherically inflated alveolar sacs in the lobuli. This duct system in the lobuli is embedded in a mesenchyma full of broad blood capillaries.
    The bronchial branches are provided with well-developed longitudinal mucous folds, a 2-3 rowed ciliated epithelium and a narrow propria, but the bronchial glands are not yet formed in the sumbmucosa around the well-developed muscularis. The cartilages around them are 1-2 rowed and the adventitia is composed of a loose connective tissue. The terminal and the respiratory bronchioli consist, of a one-rowed cylindrical epithelium and a densely arranged one-rowed smooth muscle layer and have only a very meagre propria. The alveolar ducts are narrow tubes consisting of a one-rowed cubic epithelium and a minor number of muscle fibres, and the alveolar sacs of a one-rowed cylindrical epithelium and no muscle fibres.
    The duct system in a 5th month cattle embryo is larger than in a 3rd month one in the size of the ducts, with the various tissues forming them better-developed and with the bronchial glands and their ducts formed to a small extent. The epithelium of the bronchioli is now of a one-rowed cubic type, and though alveoli are not yet formed in the alveolar ducts, a few of them are found in the alveolar sacs and the epithelium comes to be composed of cubic cells.
    In the lung of cattle embryos too, fundamental plexus and secondary plexus are formed in the adventitia and the submucosa of the bronchial branches, respectively. The former consist of loosely arranged thick nerve bundles, but the latter are only poorly developed beneath the cartilages. Nerve cell groups are found in many places in these plexuses. HAYASHI's so-called outer secondary plexus was nearly absent and the development of the subepithelial plexus was very poor in my specimens. The development of these plexuses becomes the poorer as the bronchial branches become the thinner, being finally reduced to sporadic thin nerve fibres around the bronchioli.
    In the lung of a cattle embryo, even a major ganglion contains only 50-60 nerve cells in one section, most of the ganglia consisting of 20-30 cells. Thus, the number of the ganglion cells is lower than in man or dog, but far larger than in a bat lung. The development, of these nerve cells is considerably behind that in human embryos, the formation of the nerve processes being almost indefinable and the number of the accessory cell nuclei around them being as yet very small. In a 5th month embryo, the development has barely advanced to the stage where the multipolarity of the sympathetic cells becomes dimly perceptible. The vegetative fibres always end in terminal reticula (STÖHR) is the lung of a cattle embryo too.
    Thick sensory fibres have been found existing also in the bronchial plexus of cattle embryos. The number is perhaps smaller in cattle than in human embryos and they become poorer in distribution as the bronchial branches lose distally in size. Their terminations are as extremely simple in construction as in human embryos.
    In the lame bronchial branches, the sensory fibres run into the mucous membrane in company with vegetative fibres to form their terminations in the propria, but sometimes they end in the muscularis before reaching the propria or not, rarely fibres are found to penetrate into the epithelium. These terminations are of unbranched and simple branched types, and their terminal fibres sometimes show perceptible change in size and specific winding courses, but usually they are of uniform size throughout, run comparatively straight, courses and taper off into sharp points.
    Download PDF (2157K)
  • Shunsaku FUJII
    1956Volume 11Issue 2 Pages 303-315
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Es wurden Paraffinschnitte von den mit der REGATUDschen Flüssigkeit fixierten Gewebsstückchen nach der Vorbehandlung mit einer sehr verdünnten Goldchloridlösung mit einer Silbernitratlösung überdeckt und dann mit einem Gelatine-Hydrochinongemisch reduziert. Die Mitochondrien in den Zellen tingierten sich sehr elektiv violettschwarz. Die Resultate der Versilberung nach dieser Methode an verschiedenen Organen sind mit Photographien gezeigt.
    Download PDF (1474K)
  • Toshio ITO, Teruaki TAKAHASHI, Takahisa KITAGAWA
    1956Volume 11Issue 2 Pages 317-327
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Bei 10 Fällen von frischen Achselhäuten, die von gesunden Erwachsenen genommen waren, wurden die Schweißdrüsen in den mit ZENKERFormol fixierten und mit Überjodsäure-SCHIFFscher Reaktion (PAS) gefärbten Präparaten beobachtet. Dabei wurde festgestellt, daß die Epithelzellen sowohl der apokrinen Schweißdrüsen als auch der ekkrinen immer mit einem Bürstensaum versehen sind, welcher wie bekannt PAS-positiv ist und in den mit PAS gefärbten Präparaten ausgezeichnet hervortritt. Er ist an den Drüsenzellen der a-Schweißdrüsen am dickesten und bekleidet die freie Oberfläche der homogenen Krustenschicht, welche die superfizialste Plasmazone der a-Schweißdrüsenzellen einzunehmen pflegt. Bei der apokrinen Sekretion verschwindet er auf der Oberfläche der Sekretfortsätze. Bei dem Drüsenepithel der e-Schweißdrüsen finden wir auf der freien Oberfläche der Superfizialzellen, welche ausschließlich das Drüsenlumen begrenzen, einen sehr dünnen Bürstensaum. Das Epithel des Ausführungsgangs sowohl der e- als auch der a-Schweißdrusen besitzt auch einen dünnen Bürstensaum, der auf der freien Oberfläche der Epithelzellen der inneren Schicht des Epithels bekleidet, wo wie bei den Drüsenzellen der a-Schweißdrüse eine gut ausgeprägte Krustenschicht vorhanden ist. Der Bürstensaum und Kutikularsaum stellen die metaplasmatischen Strukturen auf der Oberfläche der Epithelzellen dar, die von Autoren oft für eine mit der Resorptionstätigkeit der Epithelzellen abhängige Oberflächenvorrichtung gehalten werden, aber bei den Schweißdrusen ist die funktionelle Bedeutung des Bürstensaums der Epithelzellen unbekannt.
    Download PDF (1303K)
  • Takehiko KANEDA
    1956Volume 11Issue 2 Pages 329-339
    Published: November 20, 1956
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Das Gehirn ciner erwachsener Maus wurde kurz in Formalin fixiert und in Gefrierschnitte zerlegt. Die Schnitte wurden mit lipoidfärbendem Viktoriablau und Alkaliblau sowie mit Sudanschwarz B, welches Neutralfett und ihm nahestehende Suhstanzen färben, gefärbt. Gleichzeitig färbte man die Schnitte nach der HEIDENHAINschen Azanmethode, um den Zusammenhang zwischen der Dichtigkeit der submikroskopischen Struktur des NISSL-Graus, nämlich des Mengenverhältnisses der nervösen und gliösen Elemente, und der Menge des freien Lipoides zu untersuchen.
    In solchem NISSL-Grau, das eine niedrige Ultrastrukturdichte aufweist und daher vielleicht reichlich mit nervösen Elementen versehen ist, ist auch reichlich mit Viktoriablau und Alkaliblau zu färbendes Lipoid enthalten, und umgekehrt. Festgestellt ist, daß das ultrastrukturell besonders lockere NISSL-Grau wie in der Zona marginalis des Rückenmarks, in der Molekularschicht der Klcinhirnrinde und in der Regio olfactoria der Großhirnrinde, sich mit nervösen Elementen und Lipoid bereichert. Das NISSL-Graus des sich auf dem Riechsinn beziehenden Nucleus thalami rostralis und amygdalae ist zwar ultrastrukturell mittelgradig dicht, ist es aber ausnahmsweise mit Viktoriablau und Alkaliblau verhältnismäßig gut zu färben und demgemäß verhältnismäßig reich am Lipoid. In dem Nucleus ruber und der Formatio reticularis wird das NISSL-Grau merkwürdigerweise mit Sudanschwarz B und Sudan III am besten gefärbt und ist also an Neutralfett reich.
    Download PDF (1166K)
feedback
Top