Archivum histologicum japonicum
Print ISSN : 0004-0681
Volume 8, Issue 4
Displaying 1-11 of 11 articles from this issue
  • Hakushi YASUDA
    1955 Volume 8 Issue 4 Pages 497-506
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Die frischen kollagenen Fibrillen der Mausschwanzsehne werden durch 10minütige Ultraschallwirkung schon teilweise in Mikrofibrillen zerlegt, die mit Formalin fixierten aber erst nach 20 Minuten. Die periodische Struktur det so isolierten Mikrofibrillen ist die gleiche wie die der durch Verreiben im Achatmörser isolierten. Jede Periode teilt sich nämlich in 6 kleine Zonen.
    Verlängert sich die Beschallungsdauer, so verschwindet die Strukturperiode der nicht fixierten Mikrofibrillen. Sie teilen sich in Elementarfibrillen, Ketten von Molekülen oder Micellen, und zerfallen schließlich in einzelne Moleküle oder Micellen von 2-5mμ Diameter. Die Erscheinuug ist umgekehrt zu der Beobachtung von SEKI (1952, 1955) bei der Mikrofibrillenbildung. Nach ihm bildet sich eine Elementarfibrille durch Verbindung der Moleküle oder Micellen in Längsrichtung, und durch gleichzeitige und wiederholte Zusammenlagerung mehrerer Elementarfibrillen entsteht eine dickere Mikrofibrille.
    Bei der Azanfärbung benutzt man kleinmolekulares Goldorange G, mittelgroß molekulares, rotes Azokarmin und noch größer molekulares Anilinblau. Die unbehandelten Gefrierschnitte der frischen Sehnenfasern färben sich nach der Azanmethode bei Anwendung der Farbstofflösungen in gewissen Konzentrationen orangerot. Nach der 5minütiger Ultraschallwirkung werden sie rotviolett und nach der 10minütiger violettblau oder blau färbbar. Die Färbung in abnehmendem Rot und zunehmendem Blau zeigt eine Herabsetzung der Strukturdichte. Die mit Formalin fixierten Fasern färbten sich immer violettblau. Ihr Strukturdichte wurde durch die Beschallung nicht verändert.
    Durch die Ultraschallwirkung entstehen aus den kollagenen Fasern zahlreiche tropfenförmige Gebilde, vielleicht von fettiger und lipoider Natur.
    Download PDF (1212K)
  • Tetsu KARIYA
    1955 Volume 8 Issue 4 Pages 507-516
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Es wurden Schnitte der Rindsleber, die mit Formalin bzw. mit Kaliumbichromat, Sublimat oder Cobaltnitrat enthaltenden Flüssigkeit fixiert waren, mit dem lipoidfärbenden Viktoriablau und dem fettfärbenden Sudan III gefärbt.
    1. Nach der Formalinfixierung ist die Färbbarkeit der Cytoplasmagrundsubstanz und des Kerns mit dem Viktoriablau schlecht, und im Cytoplasma treten nur wenige rundliche Granula stark gefärbt hervor. Nach der Fixierung mit der ORTHschen, HELLYschen oder DA FANO-schen Flüssigkeit oder aber bei einer nachträglichen Behandlung des formalinfixierten Materials mit sublimathaltiger Flüssigkeit oder Bichromat kann sich die Färbbarkeit der Cytoplasmagrundsubstanz und des Kerns mit Viktoriablau in großem Ausmaß verstärken. Es treten dabei viele Granula stark gefärbt hervor. Das Bichromat, Sublimat und Cobaltnitrat wirken also auf die lebende Substanz lipoiddemaskierend.
    2. Nach der Fixierung mit zu stark sauren Flüssigkeiten, wie von TELLYESNICZKY, HELD, ZENKER oder Susa Gemisch findet man im Cytoplasma die mit dem Viktoriablau färbbaren Granula nur wenig, weniger als nach der Formalinfixierung, trotzdem das Cytoplasma als ganzes und der Kern etwas besser gefärbt werden.
    3. Nach der Fixierung mit den zu stark sauren Fixierungsflüssigkeiten nimmt die Färbbarkeit des Cytoplalmas und der darin eingeschlossenen Granula mit dem Sudan III ab. Weitere Verschiedenheiten der Färbbarkeit mit dem Sudan III je nach der Art von Fixierungsflüssigkeiten ließen sich nicht wahrnehmen.
    Download PDF (2940K)
  • Masao OKADA
    1955 Volume 8 Issue 4 Pages 517-531
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Histological changes in the neurohypophysis induced by the electrical stimulation of the hypothalamus of mature rabbits were observed by means of GOMORI's chrome-alum hematoxylin phloxin, HALMI's aldehyde-fuchsin and silver impregnation methods, and the results were as follows:
    In control animal, the neurohypophysis is entirely filled up with a lot of neurosecretory granules in various size, and more or less contain droplets. Especially there are many granules around the vessels and also in that part in contact with pars intermedia, conversely they are few in the‘Zwischenstreifen’. In silver-staining preparations it seem that those granules are drawn up along the nerve fibre.
    In case of stimulation of the ventromedial hypothalamic nucleus, the number of neurosecretory granules shows remarkable diminution, especially around the vessels, with the diminution of the droplets simultaneously. The curve of their number is lowest 5 minutes after stimulation, later ascends gradually to normal level as the time passes 20min., 40min., 60min., and then the number exceeds over that of the control number after 90min.
    In case of stimulation of the lateral hypothalamic nucleus, the number of neurosecretory granules becomes somewhat more than of the control. However, the granules gather around the vessels, but on the other hand in‘Zwischenstreifen’it decreases. And the size of droplets becomes smaller. These changes become clearly observable immediately after the stimulation and usually after 5 minutes. Moreover, as the lapse of time of 20min., 40min., 60min. and so on, the number of the granules decreases to the normal level.
    According to the finding mentioned above, we think that, in case of sympathetic stimulation of ventromedial hypothalamic nucleus, the neurosecretory material is transmitted into the blood, while, in case of parasympathetic stimulation of lateral hypothalamic nucleus, the excreation of the material is inhibitted.
    Download PDF (1585K)
  • Masao OKADA
    1955 Volume 8 Issue 4 Pages 533-544
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The author investigated the relationship of the neurosecretory cells to the third ventricle of rana catesbiana by a modification of HALMI's staining and obtained the following results:
    The neurosecretory cells contain numerous granules. The group of these cells are adjacent to the third ventricle and situated from rostroventral to dorso-caudal in the hypothalamus.
    Some neurosecretory cells are bipolar and process of these cells protrudes into the third ventricle, through which granules are secreted into the cerebrospinal fluid. Such cells are found also in the subependymal and intraependymal layer.
    Other neurosecretory cells contain droplet-like granules in the cytoplasm, and these granules are discharged into the third ventricle, not through the nervous process, but through the intercellular spaces.
    Fine neurosecretory nerve fibers, which contain the granules or droplets, are found at the subependymal layer. The fibers reach the ependymal cells or the spaces between them.
    Download PDF (1186K)
  • Masao OKADA
    1955 Volume 8 Issue 4 Pages 545-555
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The relationship of the neurosecretory system to the anterior pituitary gland was investigated bei rabbits by a modification of HALMI's staining. The results were as follows:
    Some neurosecretory granules of the hypothalamo-hpyophysial neurosecretory fibers enter into the intercellular spaces of the pars tuberalis and of the frontal half part of the pars distalis via the primary blood capillaries of the hypophysial portal system and their perivascular spaces.
    Some neurosecretory granules enter into the intercellular spaces in the caudal half part of the pars distalis via the pars intermedia from the pars nervosa.
    The hypothesis that the hypothalamic neurosecretory material controls the function of the anterior pituitary gland, is therefore from the morphological view point much more supported.
    Download PDF (3914K)
  • Shoichiro SATSUKI
    1955 Volume 8 Issue 4 Pages 557-597
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Bei 14 Kaninchen (Körpergewicht 1490-1620g) wurde der Hungerzustand herbeigeführt, indem 7 Tage lang nur ein mangelhaftes Futter (täglich auf 50 Kalorien beschränkt) dargereicht worden war. Am 7ten Tage wurden von einzelnen Hungerkaninchen kleine Probestücke operativ herausgeschnitten, am 8ten Tage wurde diesen Hungerkaninchen plötzlich reichliches Futter gegeben, dann wurden sie je nach 2, 4, 6, 12 und 24 Stunden getötet und ihre Leber zusammen mit den Probestücken zytologisch und histologisch untersucht, um hauptsächlich die Veränderungen der Leberzellen und der Fettspeicherungszellen von ITO zu studieren. Die wichtige Ergebnisse werden im folgenden zusammengefaßt dargestellt.
    1. Durch die 7tägige Fütterung mit dem Mangel- oder Hungerfutter nahm das Körpergewicht der Kaninchen um 260-420g ab, doch nahm es durch die einmalige Darreichung des reichlichen Futters am 8ten Tage merklich zu (Tabelle 1) und zeigte nach 24 Stunden eine Zunahme von 20-40g.
    2. Aus den mikroskopischen Beobachtungen der Probestücke ergab es sich, daß an den Lebern der 7 Tage lang mit dem Hungerfutter ernährten Hungerkaninchen keine nennenswerten pathologischen Veränderungen bemerkt wurden. Dagegen traten die folgenden leichten Verändeungen auf, nämlich leichte Atrophie der Leberzellen, eine auf letztere zurückgehende Erweiterung des Sinusoids, eine leichte Hämosiderinablagerung in den Leberzellen, das Verschwinden des Glykogens von Leberzellen und die Verkleinerung und Gruppierung der Mitochondrien der Leberzellen, welche bei den Hungerkaninchen vorwiegend stäbchenförmig gestaltet waren. Diese Veränderungen überschritten aber die Grenze der normalen Befunde nicht.
    In der 2ten Stunde nach der reichlichen Fütterung zeigten der Zelleib und der Zellkern der Leberzellen plötzlich hochgradige Anschwellung, welche von der peripheren Zone der Leberläppchen nach der zentralen allmählich fortschritt, während sie aber schon in der 6ten Stunde nach der Fütterung beträchtlich abgeschwächt war.
    3. Durch die 7tägige Fütterung mit dem mangelhaften Futter verschwand das Glykogen von den Leberzellen fast vollständig, doch nahm es in der 2ten Stunde nach der 1maligen Darreichung des reichlichen Futters erstaunlich zu und erreichte in der 4ten Stunde das Maximum. Von der 6ten Stunde an begann es, abzunehmen und schließlich in der 24sten Stunde nahezu vollkommen zu verschwinden (Tabelle 3-7). Von diesen Verhältnissen der Glykogensynthese in Leberzellen gesehen, dürfte die Leberzellentätigkeit an der 2ten bis 4ten Stunde nach der Fütterung am höchsten sein, während sie von der 6ten Stunde an nach und nach abzusteigen scheint.
    4. Nach der 1maligen Darreichung des reichlichen Futters schwollen die Mitochondrien der Leberzellen im allgemeinen plötzlich sehr stark an, so daß sie in der 2ten und 4ten Stunde nach der Fütterung zum größten Teil grob granuläre Formen darstellten, die angeschwollene dicke Stäbchen beigemengt hatten, von der 6ten Stunde an kamen außer diesen grob granulären Mitochondrien ausgezeichnet große kuglige Riesengranula und unregelmäßig geformte Riesenkörperchen vor, welch beide wahrscheinlich durch Zusammenfließen der grob granulären Mitochondrien gebildet worden waren. In der 12ten Stunde nahmen die grob granulären Mitochondrien an Zahl ab, zugleich schwanden die kugligen Riesengranula und unregelmäßig geformten Riesenkörperchen, indem sie sich wieder in einzelne Mitochondrien ablösten, so daß die Mitochondrien der Leberzellen sich allmählich dem normalen Zustand näherten. In der 24sten Stunde kehrten die Mitochondrien nahezu zu dem Zustand zurück
    Download PDF (4344K)
  • Beiträge zur vergleichenden Histologie des Hypothalamus-Hypophysensystems. 12. Mitteilung
    Hisao FUJITA, Kiyoshi NAKAMURA, Sotatsu OKI
    1955 Volume 8 Issue 4 Pages 599-602
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Es wurde das histologische Bild, besonders das Neurosekretionsbild des Hypothalamus-Hypophysensystems eines Leoparden, Felis pardus, unter sucht.
    Dieses Tier zeigt in der Gestalt des Hypothalamus-Hypophysensystems große Ähnlichkeit mit der Kaze und hat fast keine bemerkbare Besonderheit im Vergleich zu den gewöhnlichen Säugetieren in seinem Neurosekretionsbild. Die geformten Neurosekrete (gomoriphile Substanzen) treten in den dritten Ventrikel, in die sinuösen proximalen Kapillaren des Hypophysenpfortadersystems im Trichter und in die Hinterlappengefäße ein.
    Download PDF (859K)
  • II. On‘Parotin’, a Salivary Gland Preparation
    Kimio FUJIE, Takashi NAKAO, Ichiro YAMAGATA, Takao SHIROYAMA
    1955 Volume 8 Issue 4 Pages 603-619
    Published: June 20, 1955
    Released on J-STAGE: March 27, 2009
    JOURNAL FREE ACCESS
    The facts that human saliva, gathered aseptically, could split histamine and gastric hormone ‘production’ a hormone which FUJIE belives to be a histamine like substance, and that its mechanism of splitting seemed to be entirely enzymatic, were demonstrated by FUJIE and his colleagues (Arch. hist. jap. 6, 1954). The authors have recently perfomed experiments with parotin (OGATA) which has been recently produced by TEIKOKU ZOKI Co. Ltd. as a salivary gland preparation. The results obtained were as follows.
    1. Minute amount of parotin could split histamine and ‘productin (FUJIE)’ as saliva did or even stronger than that, regardless in vivo or in vitro. The authors used 1/10mg-1/500mg of parotin and the effects they showed were inversely proportional to the quantity of parotin.
    2. On the other hand, when 1-3mg of parotin were used, histamine increased remarkably both in vivo and in vitro, and the increasing of histamine was quite proportional to the amount of parotin. This does not coincide with the results in the foregoing paragraph. The authors do not know why it is so.
    However, it seems to be very important that the results of experiments with the minute amount parotin would coincide with those of the saliva experiments, for it is already known that parotin could be extracted from parotis glands of neats in 0.02-0.03% of the gland's weight. According to the results obtained previously on the saliva and those obtained here, the authors must admit OGATA's theory that saliva is absorbed from the striated duct into the blood. Saliva, which is absorbed into the blood, may play a great rôle in controling the histamine in the body and the gastric hormone ‘productin’, and the non-saliva disease (asialadenismus of OGATA) may occur under the condition of overaccumulating of ‘productin’ (histamine-like substance).
    Download PDF (2009K)
  • Takao NISHIDA
    1955 Volume 8 Issue 4 Pages 621-637
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The present communication deals with the spinal ganglionic cells of the dog and rat, which have been studied both living and fixed, and under the phase contrast microscope. For demonstrating the living unstained ganglion cells the ganglion was rapidly dissected and minced. The minced materials were transferred to a slide, added the several suspending media, pressed under a cover slip with finger and examined immediately. The 0.88M sucrose solution was most satisfactory.
    According to the above mentioned technic, the two types of GOLGI apparatus were well identified a dark color objects by Dark-Low contrast phase. Of these, the larger type is vacuolated GOLGI body which revealed a discret binary structure, and the smaller type is simple GOLGI body, it does not contain the specific vacuoles characteristic of the other type.
    For the study of the classical GOLGI apparatus some materials were fixed in AOYAMA, DA FANO and CHAMPY's fluids. As was emphasized by RANSON, in the spinal ganglion, two types of cells can be surely identified. The large cells of the fixed preparations have the separate GOLGI bodies which are numerously distributed throughout the cytoplasm, but the GOLGI apparatus of the small cells are considerably more network like than that of the large cells and these networks are located in the neighborhood of the nuclear membrane.
    Carefully silvernated study of the isolated cells under the phase it can be seen that the spherical elements observed in the living state are progressively silvered and transformed into the classical GOLGI apparatus during observation. The classical GOLGI networks appear to be justified, therefore, that these elements are in reality a spherical bodies in living condition, and during the fixation, the spherical bodies associate with its deformed substances and the fatty elements and form the networks. It seems probably that the formation of myelin is one of the factors concerned in the transformation. The GOLGI canal described by GATENBY and other workers is not visible in the living state. These canals appear as an artifact, and it may be concluded, from a study of both light and phase contrast microscope, that the canals are in fact slits of the cyto plasm due to shrinkage brought abont by penetration of the fixative.
    Download PDF (1080K)
  • Minoru SATO
    1955 Volume 8 Issue 4 Pages 639-656
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The nerve cells in adult human sympathetic superior cervical and lumbar ganglia may be classified into the large, the intermediate and the small in size, but a small number of giant cells are also present.
    The cell nucleus in such a nerve cell usually takes eccentric, and very often a marginal position in the cell body. The size of the nucleus increases in a slow arithmetical progression as the diameter of the cell body increases.
    Granules of yellow and black pigments are frequently found in the nerve cells. Black pigments are found preferentially in the small cells. In such cells the fibrils are found sorely degenerated. Such cells are probably devoid of any mentionable functional meaning, as little as the apolar cells mentioned below.
    The nerve cells in the sympathetic trunk ganglia are always capsulated and are characterized by their multipolarity. The development of their nerve processes is markedly good in the large and the intermediate cells, but in the small cells it is very poor, some apolar cells being not lacking.
    These nerve cells are classifiable into the Type I and Type II, a small number of mixed type cells being also observable. DOGIEL and ÀBRAHÀM have asserted the afferent nature of the Type II cells, but I cannot see any justification for such an assertion.
    According to the situation of the nucleus, Type I cells may be divided into 3 forms of cells with a centrally standing nucleus, an eccentrically standing nucleus and a marginally or polarly standing nucleus. In the first form, the plasmodium around a cell is about equally thick on all sides and the nuclei therein are arranged in a single loose row, the short processes emerging indifferently from all sides of the surface of the mother cell. In the nerve cell with a eccentrically or marginally placed nucleus, the short processes usually come out one-sidedly from the cell surface farthest from the nucleus. The plasmodium around such a cell is much better developed near the process pole than on the side of the nucleus pole. The Type I cells in the trunk ganglia belong in overwhelming majority to the latter two forms.
    The Type I cells may be subdivided again according to the varied running courses of the short processes and their terminal modes as follows: 1. The cells of which the short processes show one or more anastomosis. 2. Fenestrated cells. 3. Cells with processes ending in one or more knobs or clubs. 4. Cells with short processes ending in end lamellae. 5. Those with processes ending in one or more end rings (only rarely found in trunk ganglia). There are also many nerve cells having more than one kinds of end-bodies on their short processes.
    The cells with polarly standing nuclei may be divided into octopus type cells and jelly fish type cells by the course forms of the short processes running out from the cell surface opposite to the nucleus pole. These are found in particular abundance in the superior cervical ganglion. Some of these cells may be distinguished as spiral type cells, where the short processes spirally surround the long processes. In some cases, a pair of octopus or jelly-fish type cells are placed side by side with their process poles facing each other and their nerve processes are seen mutually entwining. These may be called entwining cells.
    Among the Type I cells with centrally standing nuclei, we find on rare occasions special types that may be called glomerular type cells. The short processes of such a cell end in the plasmodium surrounding the mother cell in the form of a glomerulus.
    The cells of Type II generally take a round or an oblong form, their nucleus is centrally standing and the plasmodium is arranged in an approximately equal width around the cell body. The nerve processes of the round cell come out indifferently from all sides of the cell body but of the oblong cell they emerge from the two poles.
    Download PDF (2105K)
  • Tadashi IGARI
    1955 Volume 8 Issue 4 Pages 657-665
    Published: June 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
feedback
Top