Archivum histologicum japonicum
Print ISSN : 0004-0681
Volume 24, Issue 2
Displaying 1-5 of 5 articles from this issue
  • Toshio ITO, Yoshiyuki TAKAHASHI, Kan KOBAYASHI
    1963Volume 24Issue 2 Pages 113-127
    Published: December 20, 1963
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Bei einem Fall von nahezu ausgewachsenem, männlichem Nyctereutes procyonoides viverrinus wurden die parafollikulären Zellen in der Schilddrüse zufälligerweise in auffallend großer Menge vorgefunden. So sind sie in dieser Untersuchung zu einer eingehenden histologischen und cytologischen Beobachtung gekommen. Die Gewebsstücke aus der Schilddrüse wurden mit LEVIschem Gemisch und ZENKER-Formol fixiert, in Paraffin eingebettet und in 4μ dicke Serienschnitte zerlegt. Die Färbung geschah hauptsächlich mit Azan, Eisenhämatoxylin (HEIDENHAIN), Perjodsäure-SCHIFFscher Methode (PAS) und Hämatoxylin-Eosin. Die wichtigen Ergebnisse werden im folgenden zusammengefasst angegeben.
    1. Bei diesem Nyctereutes sind die Schilddrüsenfollikel im allgemeinen klein und von dem hohen Follikelepithel umkleidet; das inteafollikuläre Kolloid ist gering und führt verhältnismäßig viele, verschiedengroße Randvakuolen. Die im allgemeinen hohen Follikelepithelzellen enthalten nicht nur in ihrem Apikalteil kleine PAS-positive, und mit Azan und Eisenhämatoxylin kaum färbbare Granula in einer mittelmäßigen Menge, sondern auch öfters wechselnd große Vakuolen, die sich nicht selten im apikalen Ende der Follikelzellen ansammeln und als ganz helle Fortsätze ins Follikelkolloid vorspringen, wobei es sich offenbar um die Bildung der Randvakuolen handelt (kommunizierende Kolloidvakuolen nach UHLENHUTH 1927). Die oben erwähnten Ergebnisse lassen mit großer Wahrscheinlichkeit auf einen aktiven Funktionszustand dieser Schilddrüse schließen. Die PAS-positiven Granula und Vakuolen der Follikelzellen stellen möglicherweise nichts anders als die Sekretionsprodukte dar. Die einzelnen Follikel sind von vielen intraepithelialen Blutkapillaren versorgt, welche innerhalb der Basalmembran an mehreren Stellen in Basalabschnitte des Follikelepithels eindringen.
    2. Die parafollikulären Zellen zeichnen sich durch ihre Größe, durch das mit Azan blau und mit PAS relativ intensiv färbbare, homogene Cytoplasma und den großen, hellen Kern aus. Sie kommen bald im Basalteil des Follikelepithels einzeln oder in einer kleinen Gruppe vor. Dabei werden sie immerhin vom Follikellumen durch mehr oder weniger abgeflachte, einschichtig angeordnete Follikelepithelzellen abgeschieden, so daß sie bei keinem Fall dem Follikelkolloid unmittelbar angrenzen. Die intraepithelialen Parafollikularzellgruppen wölben sich nicht selten mit ihren Basalflächen nach dem interstitiellen Bindegewebe vor, die Basalmembran des Follikels drängend. Bald sprossen sie als mehr oder weniger große Gruppe oder Anhäufung aus dem Follikelepithel weit in das interstitielle Bindegewebe aus und bilden verschiedengroße interfollikuläre Parafollikularzellanhäufungen (-komplexe). In diesen findet man nicht selten kleine Follikel oder atrophierte Follikelzellen. Bei diesem Nyctereutes findet man außerordentlich große Anhäufungen in nicht geringer Zahl vor. Daraus läßt sich schließen, daß die wahrscheinlich von Follikelepithelzellen abstammende Parafollikularzelle zuerst als intrafollikelepitheliale Zelle einzeln oder in einer kleinen Gruppe auftreten. Dann sprossen sie infolge der Vermehrung aus dem Follikelepithel ins interstitielle Bindegewebe aus und bilden verschiedengroße interfollikuläre Parafollikularzellanhäufungen. Durch Zusammenfließen einiger Sproße aus benachbarten Follikeln erfolgen öfters außerordentlich große Komplexe. Unter Umständen greifen auswachsende Sproße wahrscheinlich kleine Follikel ein und lassen als Reste der zerstörten Follikel atrophierte Follikelepithelzellen zwischen den Parafollikularzellen übrig.
    Download PDF (8138K)
  • Reiji HIRAKOW
    1963Volume 24Issue 2 Pages 129-140
    Published: December 20, 1963
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    In the fibroblastic cells cultured in vitro relatively rapid movement of granules which is noticeable directly under a microscope was observed. Attempt was made to identify these motile granules cytochemically and to clarify the mechanism of this kind of movement.
    1. Materials used were fibroblastic cells originated mainly from chick embryo (5 to 15 day) heart. Continuous observations were made, during various procedures, in a devised perfusion chamber, under the oil immersion microscope.
    2. Various stainings and cytochemical examinations of enzymes were applied. For criteria of identification, succinic dehydrogenase and acid phosphatase were selected as reference enzymes of mitochondria and lysosomes, respectively.
    3. It was concluded that these motile granules are mostly spherical mitochondria and lysosomes or their transitional forms.
    4. This result led the author to consider that the role of intrinsic enzymes in the motile granules in their movement is not so specific, but their enveloping membrane play after all an important role. Further attention should be turned to the interaction between the granules and the surrounding cytoplasmic substance.
    Download PDF (4477K)
  • Masaji SEKI
    1963Volume 24Issue 2 Pages 141-153
    Published: December 20, 1963
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    1. Die Riechfäden sind bei der Maus in den Löchern der Siebbeinplatte mit Räumen fast ohne Zellen und Fasern umgeben, bei der Ratte aber mit denjenigen mit wenigen Gewebselementen. Beim Meerschweinchen, Kaninchen und Hund ist um die Riechfäden ein deutlich netzartiges Gewebe vorhanden. Beim Affen ist um das netzartige Gewebe noch eine mehr oder weniger dicke Duralscheide entwickelt. Die Duralscheide bildet sich beim Menschen noch viel stärker aus, während die Perineuralräume sich bei ihm stark reduzieren.
    2. Die in den Subarachnoidalraum der Maus eingeführten Fremdstoffe, Tusche und Trypanblau, treten sehr leicht durch die Siebbeinplatte in die Nase und breiten sich in den Wandungen der Nasenhöhle in großer Ausdehnung aus. Bei der Ratte wird die Tusche zu einem kleinen Teil an den Löchern der Siebbeinplatte festgehalten, beim Meerschweinchen, Kaninchen und Hund etwa zur Hälfte. Die durch die Siebbeinplatte ausgetretene Tusche breitet rich wie bei den obigen Tieren in den Nasenwandungen aus. Beim Affen begibt sich die Tusche von den Riechfäden begleitet bis in die tiefste Schicht der Nasenschleimhaut, verbreitet sich aber nicht weiter. Die Durchläßigkeit der Siebbeinplatte des Menschen ist vermutlich noch schlechter.
    3. Bei den Tieren sind die Zellen im netzartigen Bindegewebe um die Riechfäden zumeist stern- oder spindelförmig und besitzen schlanke Ausläufer. In einer ganzen Reihe von unseren Experimenten wandelten sie sich nicht merklizch durch Einziehen der Ausläufer zu monozytären Formen oder Histiozyten um. Die im günstigen Milieu mit immer erneuerter Ernährungsflüssigkeit befindlichen Bindegewebszellen haben vielleicht eine geringere Neigung sich zu den genannten Zellen umzuwandeln.
    4. Die in die Nasenschleimhaut der Maus sorgfältig injizierte Tusche erreicht nicht die Siebbeinplatte. Das kolloidale Trypanblau tritt zweilen in die Löcher der Siebbeinplatte ein. Das Trypanblau tritt, nur wenn es tief in die Nähe der Siebbeinplatte eingespritzt wird, durch die Platte über und färbt vorübergehend das Subarachnoidalgewebe oberhalb der Platte. Die Flüssigkeit scheint aber in normalem Zustand nur von dem Schädelraum nach dem Naseninneren hin zu strömen.
    Download PDF (5206K)
  • Hiroshi KANEKO
    1963Volume 24Issue 2 Pages 155-185
    Published: December 20, 1963
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Since the last century, histological studies on human tracheal glands have been carried out not infrequently, but nevertheless the cytological details and their changes accompanying the secretory function still remain in perfect obscurity. The author obtained in operations healthy tracheal mucosae from 25 cases, and performed histological and cytological observations on the tracheal glands. The samples were fixed in LEVI's and CHAMPY's fluids, ZENKER-formol, 10% formol and formol-alcohol, embedded in paraffin, and serially sectioned 3-4μ thick. For staining, hematoxylin (HANSEN)-eosin, HEIDENHAIN's iron-hematoxylin, azan, periodic acid-SCHIFF (PAS) reaction and BAUER's reaction were employed. The GOLGI apparatus was visualized by KOLATCHEV's osmic acid method, and sometimes further stained with KULL's method. The results are summarized as follows:
    1. The human tracheal gland is mainly found in submucosa, and extends in different ways in the cartilaginous region, intercartilaginous region and paries membranaceus, In the cartilaginous region, it spreads parallel to the surface, and in the intercartilaginous region and paries membranaceus, it spreads in most cases into the deep layers perpendicular or oblique to the surface. In this way, the shape and the location of the gland is dependent on the presence of the tracheal cartilage.
    2. The gland opens in the bottom of the tubular or funnel-shaped crypt of the tracheal mucosa, lined by the same pseudostratified columnar ciliated epithelium like the surface of the mucosa. The crypts sometimes show at the bottom simple branching.
    3. All the tracheal glands are provided excretory ducts with wide lumina, lined by a simple columnar epithelium consisting of a single layer of high columnar epithelial cells and a layer of basal cells in its base. Sometimes the excretory duct shows a simple branching. The striated portions, as found in the ducts of the large salivary glands, are not visible.
    4. Secretory portion directly continuous with the excretory duct is a large mucous glandular tubule which ramifys several times into small mucous branches. In the mucous tubule and its branches open many tubular and alveolar albuminous (serous) secretory portions (terminal portions), which consist of albuminous glandular cells and also ramify. The human tracheal glands are therefore neither pure mucous nor pure serous (or albuminous) glands, but are always mixed glands, and from morphological standpoint they should be called simple and sometimes compound branched tubuloalveolar glands.
    5. Concerning the distribution of both mucous and albuminous cells in the branched glandular tree there exists a definite rule: the former being situated near the excretory duct occupying the proximal portion, and the latter being distributed in the more distal part making the terminal portions of the tree. The branched mucous tubule consequently not only secretes mucous secretion but also serves as a part of the excretory duct. Numerous demilunes, consisting of albuminous cells, are found in the wall of the branched mucous tubule.
    6. The tracheal gland has many demilunes of variable shapes and sizes, and in some occasions several demilunes are grouped at the end of the mucous tubule. Larger demilunes of alveolar form protrude often from the mucous tubule wall into the interstitial connective tissue, including deep lumina. These findings suggest the transition of demilunes into albuminous tubules or acini. Demilunes are considered to be poorly developed albuminous tubule or acini and present the same cytological changes in secretory function.
    7. Between the basal surface of the glandular cells (mucous and albuminous) and the membrana propria of the glandular tubules, there are many myoepithelial cells, which are of smooth muscle fiber type and arranged in parallel with the long axis of the glandular tubule.
    Download PDF (14381K)
  • Shozi HAGIWARA
    1963Volume 24Issue 2 Pages 187-227
    Published: December 20, 1963
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The vestibular membranes (REISSNER's membranes) of the normal adult guinea pigs, rats, mice, bats, rabbits and cats were observed with the electron microscope. The specimens were fixed with 1% OsO4 adjusted to pH 7.4 with phosphate or veronal acetate buffer, and embedded either in a mixture of styrene and n-butyl methacrylate (1:1) or epoxy resin. Thin sections were made with PORTER-BLUM microtome using glass knives, and stained with uranyl acetate. Microscopy was performed with either HU-10 or JEM-T6 electron microscope, and obtained the following results:
    1. The vestibular membrane is divided by a single basement membrane into the ectodermal epithelium facing the cochlear duct and the mesenchymal epithelium facing the scala vestibule Either epithelium is simple monolayered, but the former is continuous while the latter is porous (discontinuous).
    2. Epithelial cells of the cochlear duct are flat in the case of guinea pigs, rabbits and cats, and contain oval nuclei whose long axes are parallel to the basement membrane. In the case of rats, mice and bats, the epithelial cells are cuboidal and the nuclei are spherical.
    The free surface of the cells facing the endolymph is provided with many microvilli, which are numerous at the region near the intercellular junctions. The lateral cell surface adjoining the neighbouring cells is not usually straight, but forms an elaborate interdigitations especially at the basal half or one-third of the lateral cell wall.
    Development of the interdigitation may vary widely according to the difference of animal species, and also differs from cell to cell even in the same organelle. In mice, rats, rabbits and bats, the intercellular interdigitations are well developed, but in the bat and cat they are poorly developed and simple curvatures are observed near the base. The intercellular space is usually narrow and uniform in thickness, but in a region where the interdigitations are remarkable the space may be dilated at the tip of the curvature. The terminal bar seal up the interecellular space at the luminal edge of the lateral boundaries, and desmosomes can be observed in many places of the intercellular cell boundaries.
    In the epithelial cells of the rats and mice cochlear ducts, small vesicles, tubules or sacs are aligned into a row which connect the lateral to the basal cell surface. It seems likely that the row of the vesicles is a section through a turtuous tubule or tubules which sometimes dilate into sacs. In the rabbit, remarkable structures are observed at the basal part of the epithelial cell. They probably be produced by extension of cytoplasmic processes fitted in the invaginated cavity of the basal infolding. The processes may be extended from the own cell body or from the neighbouring cells. Therefore, such a complicated unity of the infoldings and interigitations is called an islands-like structure.
    Along the basal all surface, various types of infoldings of the plarma membrane can be observed. In the guinea pig, the basal surface is almost smooth with simple small indentations; in the rat and bat are observed somewhat complicated invaginations or infoldings which are reminiscent of the basal infoldings of the HENLE's loop of the mammalian renal tubules; besides these in the rat cochlear epithelium small tubules with a turtuous course are found in the region near the nucleus and clearly open to the basal surface with several orifices; in the rabbit extremely complicated infoldings with islands-like structures are seen in the basal cytoplasm; while in the cat relatively large indentations and rather simple islands-like structures can be observed.
    In the cytoplasm, many small vesicles are diffusely scattered, and along the cell periphery not only under the free surface but also lateral and basal surfaces near interdigitations and infoldings many pinocytotic vesicles are observed.
    Download PDF (24087K)
feedback
Top