The Japanese Journal of Genetics
Online ISSN : 1880-5787
Print ISSN : 0021-504X
ISSN-L : 0021-504X
Volume 31, Issue 12
Displaying 1-4 of 4 articles from this issue
  • Ken NOZAWA
    1956 Volume 31 Issue 12 Pages 321-326
    Published: 1956
    Released on J-STAGE: May 21, 2007
    JOURNAL FREE ACCESS
    1. The expressivity of curled character in Drosophila melanogaster is influenced by the environmental conditions. One of these is the nutritional condition through the larval stage: the better the nutritional condition the more typical the curled character. Another is the cultural temperature: the higher the temperature the higher the expressivity. The temperature-effective period is in the last day of the pupal stage. These properties of the curled phenotype are identical with those of Curly character, although the level of expressivity is far lower in the former.
    2. When these two mimic genes are combined, the curling appearance of the flies changes increasingly; the recessive curled gene is incompletely dominant in the presence of the Curly gene.
    Download PDF (599K)
  • Mitsuo TSUJITA
    1956 Volume 31 Issue 12 Pages 327-329
    Published: 1956
    Released on J-STAGE: May 21, 2007
    JOURNAL FREE ACCESS
    The lethal lemon and the lethal albino larvae1) show some phenotypical resemblance. In both, the lem and the al larvae, the mandibular cuticle does not develop properly, so that they cannot chew mulberry leaves and starve to death immediately after the first moulting. The lethal lemon larva contains in its epidermis a large amount of yellowish pigment which gives the body a yellowish color, while the lethal albino larva has a light brown color.
    It has been confirmed in my previous experiments2), 3), 4) that +, lem and leml form a multi-allelic series. In order to investigate the genetical relation between the al and the leml genes, cross experiments between the two strains and between lemon strain (lem/lem) and albino strain were carried out. From the experimental results it was found that al gene does not locate on chromosome III. However, the linkage group to which al gene belongs has not yet been clarified, although linkage tests of al to several genes of the known other linkage groups were tried.
    In another experiment5) it has been proved that the lethal lemon and lethal albino are different in their metabolic physiology. The gene leml is mainly responsible for abnormal pterin formation, while the gene al has a weaker capacity to form melanin. These physiological abnormalities have secondarily effects upon other metabolic processes such as abnormal formation of the cuticular layer of the hypodermis and produce somewhat similar expression.
    Download PDF (303K)
  • XI. The karyotypes of Nigella damascena and some other species
    Masahide KURITA
    1956 Volume 31 Issue 12 Pages 330-333
    Published: 1956
    Released on J-STAGE: May 21, 2007
    JOURNAL FREE ACCESS
    1. The karyotypes of six species and one variety can be represented as follows:
    Nigella damascena K(2n)=12=4A1m+6csA2m+2tBst
    N. hispanica K(2n)=12=4A1m+6csA2m+2Bst
    Ranunculus acris var. nipponicus K(2n)=14=4Am+2Bm+2Cst+2Dst+2E1st+2tE2st
    R. gramineus K(2n)=16=8Am+2Bst+2Cst+4Dst
    Anemone Tagawae K(2n)=14=12Am+2tBst
    A. sikokiana K(2n)=14=10A1m+2tA2m+2tBst
    Pulsatilla dahurica K(2n)=16=10Am+2B1st+2tB2st+2tCst
    2. The basikaryotypes found in Anemone can be classified into two large groups, one of which consists of two small groups slightly differing from each other (Fig. 6, A, B; C). The A-basikaryotype in Fig. 6 is quite equal to the basikaryotype of Hepatica, while the C is slightly differed from that of Pulsatilla (Ibid. D).
    Download PDF (548K)
  • An award lecture at the 28th annual meeting of the Genetics Society of Japan, held in Toyama, Japan, Oct. 6-8, 1956
    Seizi TATUNO
    1956 Volume 31 Issue 12 Pages 334-341
    Published: 1956
    Released on J-STAGE: May 21, 2007
    JOURNAL FREE ACCESS
    Durch die zytologischen Untersuchungen über die 146 Arten und 2 Varietäten von Lebermoosen wurden die folgenden Tatsäche erklärt.
    (1) Jede der vier Ordnungen der Lebermoose hat ihre charakteristischen Chromosomenzahlen und Karyotypen.
    (2) Bei jeder Art sind das grösste (H) und das kleinste (h) Chromosom, oder eines der beiden, mehr heterochromatisch als die anderen Chromosomen desselben Chromosomensates. Die Vergleichung der Karyotypen bei allen untersuchten Arten ergab, dass die grössten Chromosomen, und auch die kleinsten, untereinander homolog sein müssten. Die Evolution der solchen Heterochromosomen sind parallel der Phylogenie der Lebermoose: In dem Chromosom der primitiven Arten kommt keines oder nur geringeres Heterochromatin vor, aber in dem der höheren Arten sehr mehr.
    (3) Die Geschlechtschromosomen der Lebermoose sind speziell differenzierte Heterochromosomen. Die Geschlechtschromosomen aus einigen Arten müssen von den H, aus anderen Arten von den h abgeleitet werden. Daraus folgt, dass die Geschlechtschromosomen der Lebermoose zweierlei Ursprungs sein müssen.
    (4) Die Verbreitung der intraspezifischen Polyploiden von Dumortiera hirsuta (n=9, 18, 27) treten in nähere Beziehung mit der geologischen Formation ihrer Fundorte: die Haplonten wurden nur auf dem Boden des Kalksteines, die Diplonten und Triplonten nicht nur dem Kalksteine sonderen auch auf den Böden der je 7 und 22 verschiedenen, anderen Arten von Gesteinen gefunden. Daher können die Polyploiden mit mehr Chromosomen auf den mehr verschiedenen Gesteinen wachsen als die Pflanzen mit wenigen Chromosomen.
    Download PDF (840K)
feedback
Top