The Japanese Journal of Genetics
Online ISSN : 1880-5787
Print ISSN : 0021-504X
ISSN-L : 0021-504X
Volume 14, Issue 3
Displaying 1-4 of 4 articles from this issue
  • Tokio HAGIWARA
    1938 Volume 14 Issue 3 Pages 107-116
    Published: 1938
    Released on J-STAGE: April 04, 2007
    JOURNAL FREE ACCESS
    Regarding the flowering time, this plant is divided into early strains and late strains. The hybrid between an early strain and a late strain was intermediate in the flowering time, and segregated intermediate, early and late plants in the ratio 9:3:4 in F2. The raising of F3 plant confirmed this segregation. The correlation coefficient+0.907±0.0187 was calculated between the flowering time of F2 plants and their offspring.
    From this genetic experiment, it has been concluded that the flowering time is a Mendelian character, lateness being recessive to earliness, and that the determination of the flowering time concerns with at least two pairs of quantitative genes, viz. early (ea) and late (la).
    That the flowering time is made early by restricting the length of days, seems to be due to the condition of the manifestation of the genes for the flowering time, and not to the modification of the genes itself. And the differentiation of flower-buds may be determined by the genes for the flowering time.
    Besides these causes of the genetical modification of the flowering time, the germination period is responsible for the determination of the flowering time. Late germination gives rise to the late flowering. As a cause of late germination, the hardness of seed-coat which is assumed as a dominant character, is considered. The white seed strain germinates earlier than the black seed one, and the flowers of the former bloom somewhat earlier than those of the latter.
    Moreover the position of flowers on the stem is recognized as an element influencing the flowering time. A strain which has a recessive gene precocious, blooms early and a strain which has a recessive gene tardy blooms late. The former gene makes the flowers on lower nods of stem, bloom early. The latter gene make the flowers on the nods of upper branches, bloom very late, because the flower-buds of the lower stem shrink before growth. The gene precocious links to cordata, tardy to maple, the recombination percent of the latter being by far larger than the former. The gene late links to pear with 20.1 percent recombination.
    Download PDF (810K)
  • Yataro TAZIMA
    1938 Volume 14 Issue 3 Pages 117-128
    Published: 1938
    Released on J-STAGE: April 04, 2007
    JOURNAL FREE ACCESS
    By irradiation of X-rays, several mutants with respect to the second chromosome of Bombyx mori had been obtained. One of them, “Sable, ” has so far been studied genetically. It appeared as a single individual in the F1 of the X-rayed PsY females (that is striped-marked and yellow blooded) crossed with untreated Py males (that is normal-marked and white blooded). The mutant shows very dirty body color and is expressed by the symbol “Sa”.
    The typical “Sable” shows normal eye-spots and trace of the crescent and the star-spots. This characteristic behaves epistatic to the plain, equistatic to the normal and the moricaud, and hypostatic to the striped marking. Although Sa belongs to the P multiple allelic group, the crossing over value between Sa and Y is only 1.8 per cent, much lower than that (25.6 per cent) for P and Y.
    Besides the visible characteristic, it accompanies lethal action. The lethal action of “Sable” is manifested, when homozygous, in the later embryonal stage.
    When SaY was crossed with Py, PSaY individuals were obtained. Among the offspring of PSaY males, mated to py females, PSaY individuals reappeared which lost lethal action.
    Lethal action of Sa seems to depend upon a chromosomal deficiency and attachment of Py to SaY or non-disjunction of the two chromosomes would have compensated the deficient part of SaY chromosome. Moreover, the presence of chromosomal inversion has been proved genetically.
    Download PDF (1236K)
  • Eisaku KAWAGUCHI
    1938 Volume 14 Issue 3 Pages 129-138
    Published: 1938
    Released on J-STAGE: April 04, 2007
    JOURNAL FREE ACCESS
    Das Genpaar W/w ist ein Allelenpaar pleiotrop wirkender Gene und zwar bedingt die Ausbildung der folgenden Pigmentierungsmerkmale: W-Tiere dunkle Serosa (schwarze Eier), schwarze Imaginalaugen und dunkle Ganglien; ww-Tiere helle Serosa (weisse Eier), helle Imaginalaugen und helle Ganglien.
    Während die Augenfarbe in den Bastarden zwischen einem W-und einem ww-Tiere nach einfacher mendelnden Vererbung sich verhielt, hat dagegen die Eierfarbe wegen sogen. mütterlicher Vererbung scheinbar recht komplizierte Erscheinungen gezeigt: Bei Kreuzung der W-Weibchen mit ww-Mänchen glichen F1-Eier immer der Mutter, dagegen ergab sich bei der reziproken Kreuzung die Zwischenfarbe, also braune Eier. F2 aus beiden F1-Tieren verhielt sich, wie sich F1 hätte verhalten sollte und zeigte dominant schwarze Eier, und die Spaltung fand erst im F3-Gelege statt, mit verschiedenen Phänotypen im Verhältnis von dunkel 12: braune 1: helle 1: gemischte 2 (braune 1: helle 1). Unter diesen Gelegen von F2 erfolgten die drei ersteren aber so, dass das einzelne F2-Individuum nur einen Farbentypus von Eiern legte, dagegen beiden letzteren Gelegen das einzelne Muttertier gemischte, d, h. zwei Farbentypen hervorbrachte, nämlich braun und hell. Bei der Rückkreuzung von F1 mit ww-Tier waren die Ergebnisse verschieden, je nachdem das F1-Tier männlich oder weiblich war. Wurden die F1-Weibchen mit ww-Männchen rückgekreuzt, so erhielt man immer gemischte F2-Gelege, und zwar dunkle und helle in gleicher Zahl, während sie bei der reziproken Rückkreuzung (F1-Männchen mit ww-Weibchen) alle dunkel waren.
    Wie unsere Transplantationsversuche (Kawaguchi und Kin, 1937) und auch die-jenigen Kikkawa's (1937) zeigten, ist im Blute der W-Tiere ein hormonartiger Wirkstoff enthalten, dagegen in dem der ww-Tiere nicht. Dieser Wirkstoff bildet die Pigmente für die Serosa der Eier, Ganglien und Imaginalaugen aus. Bisher ist es bewiesen, dass dieser Wirkstoff aus Ovarien und Hoden in das Blut abgeben wird, bei der W-Mutter schon im Eiplasma abgelagert wird und auch bei der Bildung der Serosa-Pigmente der F1-Eier möglicherweise mitwirken kann.
    Wurden ww-Eier, denen im Plasma dieser Wirkstoff fehlt, mit W-Sperma befruchtet, so blieb die Serosa der F1-Eier nach der Ablage zunächst so hell wie die von ww-Eier. Im wesentlichen färbten sich diese Eier im Laufe der ersten sieben bis zehn Tagen langsam bis zu braun aus, während sich normale und auch mit w-Sperma befruchtete W-Eier im Laufe der ersten drei oder vier Tage bis zu schwarz ausfärbten. Diese verzögerte und schwache Pigmentierung ergibt sich aus einer späteren Abgabe der Hormone aus Gonaden des Embryos. Und zwar sind diese Hormone wahrscheinlich zu wenig, um die volle Stärke normaler Serosa-Färbung zu erreichen.
    Download PDF (1128K)
  • Tokio HAGIWARA
    1938 Volume 14 Issue 3 Pages 139-147
    Published: 1938
    Released on J-STAGE: April 04, 2007
    JOURNAL FREE ACCESS
    1. The existence of four genes, dragonfly 3 (dg3), white flower (a4), yellow 3 (y3) and interaxial green 2 (ig2) is recognizable through linkage studies. Together with a gene terminal 1 (t1), these genes are added to the variegated linkage group.
    2. The next thirteen linkages are dealt with in the present paper.
    dragonfly 3(dg3) - crumpled I (c1)...... 35.2 percent
    ” - variegated 1 (v1)...... (38.7 “ 39.2 “)- Blown 1 (B1)...... 21.9 “
    ” - white flower (a4)...... 25.4 “
    ” - contorted (cd)...... 39.3 “
    ” - terminal 1 (t1)...... 34.2 “
    polymorphic (py) - yellow 3 (y3)...... 37.7 “ 41.4 “
    ” - interaxial green(ig2)...... 24.6 “
    terminal 1 (t1) - variegated 1 (v1)...... 44.3 “ 39.2 “
    contorted (cd) - white flower (a4)...... (30.1 “ 35.3 “)
    yellow 3 (y3) - Blown 1 (B1)...... 44.9 “
    polymorphic (py) - Blown 1 (B1)......25.1 “
    yellow 3 (y3) - interaxial green (ig2)......37.9 “
    3. The linkage studies whick have been done up to the present time, confirm that the number of genes included in the variegated linkage group are twelve including the four genes recently reported by author. By the present report five more genes are added to the same group. Consequently, the variegated linkage group includes seventeen genes altogether.
    Download PDF (767K)
feedback
Top