Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Volume 12 , Issue 4
Showing 1-10 articles out of 10 articles from the selected issue
  • Y. ISIMARU, T. HARADA
    1934 Volume 12 Issue 4 Pages 161-179
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    From July, 1932 to August 1933 the double pilot-balloon observations were made at the Haneda branch station of the Central Meteorological Observatory located in the compound of the Tokyo Air-port. By using the observed data we determined an empirical formula of the ascending velocity of the pilot-balloon, which is as follows: in which the velocity of the pilot-balloon ascent V is expressed in meters per minute, the lift L and the pilot-balloon weight W in grams, and the observed air temperature t before the filling up of balloon with the hydrogen gas in Centigrade. This formula is valid for the weights of the pilot-balloon from 10 gms to 70 gms. The characteristic of the new formula exists in the factor varying with the temperature.
    It is also shown that the new formula can also be derived by theoretical consideration. The author gives tables of lift for given ascending velocity and weight of the balloon. He also calculated the order of unavoidable errors arising from the observation.
    Download PDF (1136K)
  • H. NOTO
    1934 Volume 12 Issue 4 Pages 179-190
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Download PDF (724K)
  • S. WATANABÉ
    1934 Volume 12 Issue 4 Pages 191-194
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Considérons une fonction x uniforme et différentiable du temps t. Si sa derivée dx/dt est positive, nous disons que c'est l'état A; si, au contraire, elle est négative, c'est l'état A'. Désignons par q(t)dt la probabilité pour qu'une durée de l'état A se termine pendant l'intervalle (t-t+dt), et par q'(t)dt la pareille probabilité relative à l'état A'. Ces définitions étant données, la probabilité P(τ)dτ pour qu'un maximum de x reparaisse (τ-τ+dτ) après le maximum précidant, s'exprimera par la formule (1). Si l'on prend comme x la température atmosphérique moyenne pendant 24 heures de Tokyo, la formule (6) se trouve bien en accord avec les valeurs réeles.
    Download PDF (201K)
  • K. TAKAHASHI
    1934 Volume 12 Issue 4 Pages 194-198
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Es ist eine bekannte Tatsache in den reinen statistischen Erscheinungen, daβ die Wahrscheinlichkeit, mit welcher ein neues Maximum einer statistischen Grösse erst im K-ten Tage nach dem Auftreten eines maximums stattfindet, gegeben wird durch: Da manche meteorologische Grössen, wie Luftdurck, Lufttemperatur, relative Feuchtigkeit, Windgschwindigkeit, und Bewölkung, die wir im folgenden behandeln wollen, verschiedenartigen statistischen Störungen unterworfen sind, darf man wohl ihnen mehr oder weniger einen statistischen Charakter zuschreiben. Von diesem Standpunkt aus habe ich die Abstände ihrer Maxima gezählt und die Häufigkeit für das Auftreten eines jeden Maximum-abstandes berechnet. Das Resultat stimmt nicht ganz mit der oben genannten Formel, was aber verständlich ist, weil die täglich anfeinander folgenden Werte einer meteorologischen Grösse nicht gänzlich von einander unabhängig gedacht werden können. Es wurde weiter die Abhängigkeit dieser Hänfigkeitskurvevon der Jahreszeit und von dem Ort bestimmt.
    Download PDF (280K)
  • H. FUTI
    1934 Volume 12 Issue 4 Pages 199-209
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Download PDF (592K)
  • S. SAKURABA
    1934 Volume 12 Issue 4 Pages 209-215
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    We assume that the conduction of heat in fluid is governed by the law expressed in the following differential equation, where c denotes the specific heat, ρ the density, θ the temperature (or potential temperature when applied to the case of high or low pressure system), _??_ the time, Δ the Laplacian operator, κ the thermal conductivity and u, v, w respectively velocity components reckoned in the directions of the cartesian co-ordinates x, y, z. Transforming this equation into the cylindrical co-ordinate and ignoring the vertical component of velocity and vertical variation of temperature, we have where U and V respectively stand for velocity components in the di_??_ections r, φ. In this paper we consider the case in which ß0 & φ0 denoting constants independent of r and φ. Suppose the initial and boundary distribution of θ to be given in forms and then the general solution of the above expression becomes, with when θ is independent of φ, the expression reduces to Several forms of initial distribution of temperature are assumed and examined the modes of heat flow due to drift current, which give some suggestion about the thermal structure of the high or low pressure system.
    Download PDF (240K)
  • K. YAMAZAWA, Z. SATOH
    1934 Volume 12 Issue 4 Pages 215-216
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Download PDF (119K)
  • [in Japanese]
    1934 Volume 12 Issue 4 Pages 220-222
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Download PDF (215K)
  • [in Japanese]
    1934 Volume 12 Issue 4 Pages 222
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Download PDF (86K)
  • [in Japanese]
    1934 Volume 12 Issue 4 Pages 222a-223
    Published: 1934
    Released: February 05, 2009
    JOURNALS FREE ACCESS
    Download PDF (164K)
feedback
Top