In this paper is investigated the Typhoon of Sep. 11th 1937 from the point of view of the storm prediction for the Oosaka district. The results obtained are as follows;-
1. The weakening factor of wind velocity is defined by(1-
V/
Vg), where
V is the observed wind velocity and
Vg that calculated from the pressure gradient using the Humphreys' tables. This quantity has a distinct feature, influenced partly by the ground resistance, as its value decreases with time in the case of veering wind, while on the contrary increasing in the case of backing wind. That is to say, the wind velocity is in general accelerated gradually in the case of veering wind but the reverse is observed in the case of backing wind. It may be wonderful to see the distribution and variation of the weakening factor obtained in the neighbourhood of the Typhoon center of Sept. 11th 1937 as is seen in Fig. 6, showing the large wind velocity in the SE-ern quadrant. It may be perhaps partly due to the superposition of the Werly general current, so-called “Field wind” in this quadrant. Therefore, the value of weakening factor at any place on the East side of the Typhoon track decreases generally according as the center comes nearer and takes the minimum value when it arrives there and then increasing gradually in the rear. But on the western side (in the left front)the change is quite different from those above mentioned. In the city of Oosaka, its mean value is obtained as about 0.76 for the NE-erly wind and 0 28 for the SW-erly wind. These values and their deviations from the mean value in the individual cases may be useful to expect the variation of wind velocity with time when a storm attacked the city.
2. For the relation between wind velocity and atmospheric pressure gradient, a characteristic distinction between veering wind and backing wind is found. The writer tried to explain this fact theoretically that the wind should blow stronger in the Eastern side of the cyclone path (veering wind) than in the Western side (backing wind) for the places of the same pressure gradient.
3. Concerning the Typhoon of Sept. 11th 1937, the writer investigated the wind directions and velocities as was done by Mr. Goldie, and found no discontinuity line nor secondary low pressure and diverging line in the region of the Typhoon. Perhaps this Typhoon had still a symmetrical structure of tropical cyclone as was presented by Dr. Y. Horiguti even after it landed on Japan Proper.
4. The relation between the maximum wind velocity and the minimum pressure, both observed at Oosaka, is investigated statistically by the data of some violent Typhoons which had attacked this district in recent years. The maximum wind velocity is approximately in inverse ratio to the minimum air pressure and is usually occurred about one hour or more late after the occurrence of the minimum air pressure.
5. Characteristic equation showing the distribution off wind velocity at the height of 50m above the mean sea level in this city is obtained as follows:- R=υ/
V=
e-0.088. D where υ is the wind velocity at a place being distant
D km. from the west edge of the harbour where the wind velocity is
V (m/s).
This empirical formula may be applicable when a SW-erly strong gale predominated over the city.
In the last, the author expresses his best thanks to Dr. K. Wadati under whose guidance this paper was made.
View full abstract