Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Volume 13, Issue 2
Displaying 1-7 of 7 articles from this issue
  • H. ARAKAWA
    1935 Volume 13 Issue 2 Pages 51-57
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    If the temperature gradient exists on the earth's surface, the upper currents tend to move along the isotherms on the earth's surface. The difference in temperature would cause the barometric gradient in the upper strata, which would hold the air away along isobars. The large temperature gradient would cause the barometric gradient in the upper strata still greater, making the wind still more vigorous. From this stand point, it is concluded that over the extratropical regions the velocities of upper currents are high and much greater in winter than in summer.
    Next the main featu_??_es of the prevailing westerly winds over the extra-tropical belts and the mild easterly winds over the equatorial region are fully deduced.
    The tropical belts of high pressure, located at 30°N or S latitude, are the so-called horse latitudes. There the wind is light and variable and the velocity small. The belts of highest pressure migrate toward the equator as the height increases, and are located at 15° N or S latitude on the upper limit of the troposphere.
    Download PDF (310K)
  • H. ARAKAWA
    1935 Volume 13 Issue 2 Pages 57-61
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    In the first paper, under the assumption made as to the distribution of density, the distribution of the currents on a spheroid without rotation of the earth is discussed. These currents consist of currents in the meridian and of vertical movements. In the present paper, a simpler reduction is shown and the distribution of the currents in consequence of the rotation of the earth are deduced.
    Download PDF (214K)
  • K. TERADA
    1935 Volume 13 Issue 2 Pages 62-66
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    On the 21st, September 1934 the severest typhoon ever experienced in the world attacked the city of Oosaka. In this district there arose severe damages by the destructive sea wave or tunami. The present author started from the consideration that this sea wave is a phenomenon similar with seiches excited by a travelling disturbance and explained the real states of tunami experienced at Oosaka and its neighbourings considering the form of the bay.
    Download PDF (213K)
  • Y. TAKAHASHI
    1935 Volume 13 Issue 2 Pages 67-73
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    Bei kurzem Gussregen, der sich oft am frühen Sommertage gefunden hatte, fande ich derartige Änderung der Regentropfengrösse mit dem Zeitlaufe, dass man sie als ein Grundform ansehen konnte.
    Erst bei Fallbeginn sind die Tropfen bezüglich gross and dazu ungleichförmig, dann scheiden sich in die zwei Klasse and zwar in die Grosse and die Kleine. Die Tropfen, die zu der Kleine gehörten, verkleinern sich allmählich, während die grosse Tropfen erlangen maximale Grösse einmal und nachdern verkleinern sich wie die kleine Tropfon. Abb. 1 zeigt diese Änderung der Tropfengrö_??_se schematisch.
    Um diese zu erklären, nahme ich wie folgend an;
    (1) Ein mit Wasserdampf gesättigte kleine Luftmasse steigt mit der Geschwindigkeit υ=V sin at auf, bis an der Zeit t=π/α, da die Aufsteigung aufhört.
    (2) Nachdem die Wassertropfen in der Wolke dieselbe Fallgeschwindigkeit (relative Geschwindigkeit gegen die Luft) wie Aufsteigungsgeschwindigkeit der Luft erlangt, fallen sie nach dem Boden ab.
    (3) Einfach lässt Verdampfung der Regentropfen sich nicht berr_??_chten.
    (4) Seine Fallgeschwindigkeit ändert sich bis zum Bogen nicht.
    Hier stelle ich eine Methode dar, wodurch aus der Αnderung der Regentropfengrösse, die auf dem Boden heobachtet wird, man die Höhe, wovon die Luftmasse aufgesteigt ist, Aufsteigungsgeschwindigkeit and dieselbe Zeitdauer berechnen kann.
    Download PDF (379K)
  • S. SAKURABA
    1935 Volume 13 Issue 2 Pages 73-85
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    Up to the present, there appeared two theories essentially different from each other concerning the mechanism of eddy diffusion. One is the mechanism of momentum conservation by L. Prandtl and the other that of vorticity conservation by G. I. Taylor. In the present report, as a successive one of our previous researches on the same problem, is adopted the form of eddy distribution;η=η0(1±σz)2.
    In this case, also are perceived some superior points of Taylor's theory to Prandtl's, but the both are not still satisfactory enough to explain the distribution of wind velocity and the angle of inclination with height, so far as it concerns Dobson's data, when we adopt the condition of the coincidence of eddy stress with surface wind in direction at z=0 assumed by Taylor and others.
    Download PDF (513K)
  • S. TAKAYA
    1935 Volume 13 Issue 2 Pages 85-101
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    Download PDF (707K)
  • [in Japanese]
    1935 Volume 13 Issue 2 Pages 101-102
    Published: 1935
    Released on J-STAGE: February 05, 2009
    JOURNAL FREE ACCESS
    Download PDF (129K)
feedback
Top