Proceedings of the Japan Academy, Series B
Online ISSN : 1349-2896
Print ISSN : 0386-2208
ISSN-L : 0386-2208
Special Issue
Volume 93, Issue 5
Displaying 1-6 of 6 articles from this issue
Reviews
  • Tetsutaro OZAWA, Osamu ONODERA
    2017 Volume 93 Issue 5 Pages 251-258
    Published: May 11, 2017
    Released on J-STAGE: May 11, 2017
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Multiple system atrophy (MSA) is an adult-onset neurodegenerative disorder that has both clinical and pathological variants. Clinical examples include MSA with predominant cerebellar ataxia (MSA-C) and MSA with predominant parkinsonism (MSA-P), whereas olivopontocerebellar atrophy and striatonigral degeneration represent pathological variants. We performed systematic reviews of studies that addressed the relative frequencies of clinical or pathological variants of MSA in various populations to determine the clinicopathological characteristics in Japanese MSA. The results revealed that the majority of Japanese patients have MSA-C, while the majority of patients in Europe and North America have MSA-P. A comparative study of MSA pathology showed that the olivopontocerebellar-predominant pathology was more frequent in Japanese MSA than in British MSA. Demonstrated differences in pathological subtype thus appear consistent with differences in the clinical subtype of MSA demonstrated between Japan and European populations. We concluded that olivopontocerebellar-predominant pathology and MSA-C may represent clinicopathological characteristics in Japanese MSA. Factors determining predominant involvement of olivopontocerebellar regions in MSA should therefore be explored.

  • Hiroshi KAWASAKI
    2017 Volume 93 Issue 5 Pages 259-269
    Published: May 11, 2017
    Released on J-STAGE: May 11, 2017
    JOURNAL FREE ACCESS FULL-TEXT HTML

    The brains of higher mammals such as primates and carnivores contain well-developed unique brain structures. Uncovering the physiological functions, developmental mechanisms and evolution of these brain structures would greatly facilitate our understanding of the human brain and its diseases. Although the anatomical and electrophysiological features of these brain structures have been intensively investigated, our knowledge about their molecular bases is still limited. To overcome this limitation, genetic techniques for the brains of carnivores and primates have been established, and molecules whose expression patterns correspond to these brain structures were identified recently. To investigate the functional roles of these molecules, rapid and efficient genetic manipulation methods for higher mammals have been explored. In this review, recent advances in molecular investigations of the brains of higher mammals are discussed, mainly focusing on ferrets (Mustela putorius furo).

  • Takahiro HARA
    2017 Volume 93 Issue 5 Pages 270-296
    Published: May 11, 2017
    Released on J-STAGE: May 11, 2017
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Research on mobile ad hoc networks (MANETs) has become a hot research topic since the middle 1990’s. Over the first decade, most research focused on networking techniques, ignoring data management issues. We, however, realized early the importance of data management in MANETs, and have been conducting studies in this area for 15 years. In this review, we summarize some key technical issues related to data management in MANETs, and the studies we have done in addressing these issues, which include placement of data replicas, update management, and query processing with security management. The techniques proposed in our studies have been designed with deep considerations of MANET features including network partitioning, node participation/disappearance, limited network bandwidth, and energy efficiency. Our studies published in early 2000’s have developed a new research field as data management in MANETs. Also, our recent studies are expected to be significant guidelines of new research directions. We conclude the review by discussing some future directions for research.

  • Minoru YOSHIDA, Norio KUDO, Saori KOSONO, Akihiro ITO
    2017 Volume 93 Issue 5 Pages 297-321
    Published: May 11, 2017
    Released on J-STAGE: May 11, 2017
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Histone acetylation is a reversible posttranslational modification that plays a fundamental role in regulating eukaryotic gene expression and chromatin structure/function. Key enzymes for removing acetyl groups from histones are metal (zinc)-dependent and NAD+-dependent histone deacetylases (HDACs). The molecular function of HDACs have been extensively characterized by various approaches including chemical, molecular, and structural biology, which demonstrated that HDACs regulate cell proliferation, differentiation, and metabolic homeostasis, and that their alterations are deeply involved in various human disorders including cancer. Notably, drug discovery efforts have achieved success in developing HDAC-targeting therapeutics for treatment of several cancers. However, recent advancements in proteomics technology have revealed much broader aspects of HDACs beyond gene expression control. Not only histones but also a large number of cellular proteins are subject to acetylation by histone acetyltransferases (HATs) and deacetylation by HDACs. Furthermore, some of their structures can flexibly accept and hydrolyze other acyl groups on protein lysine residues. This review mainly focuses on structural aspects of HDAC enzymatic activity regulated by interaction with substrates, co-factors, small molecule inhibitors, and activators.

  • Tsuneko OKAZAKI
    2017 Volume 93 Issue 5 Pages 322-338
    Published: May 11, 2017
    Released on J-STAGE: May 11, 2017
    JOURNAL FREE ACCESS FULL-TEXT HTML

    At DNA replication forks, the overall growth of the antiparallel two daughter DNA chains appears to occur 5′-to-3′ direction in the leading-strand and 3′-to-5′ direction in the lagging-strand using enzyme system only able to elongate 5′-to-3′ direction, and I describe in this review how we have analyzed and proved the lagging strand multistep synthesis reactions, called Discontinuous Replication Mechanism, which involve short RNA primer synthesis, primer-dependent short DNA chains (Okazaki fragments) synthesis, primer removal from the Okazaki fragments and gap filling between Okazaki fragments by RNase H and DNA polymerase I, and long lagging strand formation by joining between Okazaki fragments with DNA ligase.

  • Isamu MIYAKAWA
    2017 Volume 93 Issue 5 Pages 339-359
    Published: May 11, 2017
    Released on J-STAGE: May 11, 2017
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics.

feedback
Top