Biological homochirality, such as that of l-amino acids, has been a puzzle with regards to the chemical origin of life. Asymmetric autocatalysis is a reaction in which a chiral product acts as an asymmetric catalyst to produce more of itself in the same absolute configuration. 5-Pyrimidyl alkanol was found to act as an asymmetric autocatalyst in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde. Asymmetric autocatalysis of 2-alkynyl-5-pyrimidyl alkanol with an extremely low enantiomeric excess of ca. 0.00005% exhibited significant asymmetric amplification to afford the same pyrimidyl alkanol with >99.5% enantiomeric excess and with an increase in the quantity of the same compound. We have employed asymmetric autocatalysis to examine the origin of homochirality. Asymmetric autocatalysis triggered by circularly polarized light, chiral minerals such as quartz, chiral organic crystals composed of achiral compounds gave highly enantioenriched pyrimidyl alkanol with absolute configurations corresponding with those of the chiral triggers. Absolute asymmetric synthesis without the intervention of any chiral factor was achieved. Chiral isotopomers acted as chiral triggers of asymmetric autocatalysis.
The voltage sensor domain (VSD) has long been studied as a unique domain intrinsic to voltage-gated ion channels (VGICs). Within VGICs, the VSD is tightly coupled to the pore-gate domain (PGD) in diverse ways suitable for its specific function in each physiological context, including action potential generation, muscle contraction and relaxation, hormone and neurotransmitter secretion, and cardiac pacemaking. However, some VSD-containing proteins lack a PGD. Voltage-sensing phosphatase contains a cytoplasmic phosphoinositide phosphatase with similarity to phosphatase and tensin homolog (PTEN). Hv1, a voltage-gated proton channel, also lacks a PGD. Within Hv1, the VSD operates as a voltage sensor, gate, and pore for both proton sensing and permeation. Hv1 has a C-terminal coiled coil that mediates dimerization for cooperative gating. Recent progress in the structural biology of VGICs and VSD proteins provides insights into the principles of VSD coupling conserved among these proteins as well as the hierarchy of protein organization for voltage-evoked cell signaling.
Since globotetraosylceramide was defined as a major glycosphingolipid in human erythrocytes, various glycolipids have been found in normal cells and diseased organs. However, the implications of their polymorphic structures in the function of individual cells and tissues have not been clarified. Genetic manipulation of glycosphingolipids in cultured cells and experimental animals has enabled us to substantially elucidate their roles. In fact, great progress has been achieved in the last 70 years in revealing that glycolipids are essential in the maintenance of integrity of nervous tissues and other organs. Furthermore, the correct composition of glycosphingolipids has been shown to be critical for the protection against inflammation and degeneration. Here, we summarized historic information and current knowledge about glycosphingolipids, with a focus on their involvement in inflammation and degeneration. This topic is significant for understanding the biological responses to various stresses, because glycosphingolipids play roles in the interaction with various intrinsic and extrinsic factors. These findings are also important for the application of therapeutic interventions of various diseases.