Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Volume 71, Issue 2
Displaying 1-16 of 16 articles from this issue
Review
  • Masaki Honda
    2022 Volume 71 Issue 2 Pages 151-165
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    Carotenoids are naturally occurring pigments whose presence in the diet is beneficial to human health. Moreover, they have a wide range of applications in the food, cosmetic, and animal feed industries. As carotenoids contain multiple conjugated double bonds in the molecule, a large number of geometric (E/Z, trans/cis) isomers are theoretically possible. In general, (all-E)-carotenoids are the most predominant geometric isomer in nature, and they have high crystallinity and low solubility in various mediums, resulting in their low processing efficiency and bioavailability. Technological developments for improving the processing efficiency and bioavailability of carotenoids utilizing the Z-isomerization have recently been gaining traction. Namely, Z-isomerization of carotenoids induces a significant change in their physicochemical properties (e.g., solubility and crystallinity), leading to improved processing efficiency and bioavailability as well as several biological activities. For the practical use of isomerization technology for carotenoids, the development of efficient isomerization methods and an acute understanding of the changes in biological activity are required. This review highlights the recent advancements in various conventional and unconventional methods for carotenoid isomerization, such as thermal treatment, light irradiation, microwave irradiation, and catalytic treatment, as well as environment-friendly isomerization methods. Current progress in the improvement of processing efficiency and biological activity utilizing isomerization technology and an application development of carotenoid Z-isomers for the feed industry are also described. In addition, future research challenges in the context of carotenoid isomerization have been elaborated upon.

    graphical abstract Fullsize Image
  • Toshiaki Taira
    2022 Volume 71 Issue 2 Pages 167-175
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    Metallosurfactants are emerging as a relatively new class of surfactants whose ligand moieties bind to various transition metals. Because transition metal centers are incorporated into the surfactant frameworks, they can form various self-assembled structures with metallic interfaces such as micelles, vesicles, and lyotropic liquid crystals. To reduce the lability of transition metal complexes under aqueous conditions, various amphiphilic ligands have been developed as surfactant frameworks. This review discusses some aspects of the design and chemical structures of amphiphilic ligands, as well as focus on various functions and types of chemical bonds present in metallosurfactants.

    graphical abstract Fullsize Image
Oils and Fats
  • Harrison Lik Nang Lau, Yi Shen Tee, Mieow Kee Chan, Soek Sin Teh
    2022 Volume 71 Issue 2 Pages 177-185
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS

    Phosphoric acid is used in the refining of palm oil for the removal of phosphatides. The high concentration of phosphorus in solvent extracted palm-pressed mesocarp fiber oil hinders palm oil mills to recover this phytonutrients-rich residual oil in pressed fiber which typically contains 0.1 to 0.2% of total oil yield. This study aimed to refine the palm-pressed mesocarp fiber oil and determine the optimum dosage of phosphoric acid for acid-degumming of palm-pressed mesocarp fiber oil while retaining its phytonutrients. The refining process was carried out with combination of wet degumming, acid degumming, neutralisation, bleaching and deodorization. The optimum dose of phosphoric acid was identified as 0.05 wt.% by incorporating the wet degumming process. The refined palm-pressed mesocarp fiber oil showed a reduction in phosphorus content by 97% (from 901 ppm to 20 ppm) and 97% free fatty acid content removal (from 6.36% to 0.17%), while the Deterioration of Bleachability Index increased from 1.76 to 2.48, which showed an increment of 41%. The refined oil retained the key phytonutrients such as carotenoids (1,150 ppm) and vitamin E (1,540 ppm) that can be further developed into high-value products. The oil meets the quality specification of refined, bleached, and deodorized palm oil while preserving the heat-sensitive phytonutrients, which in turn provides a new resource of nutritious oil.

    graphical abstract Fullsize Image
    Download PDF (278K)
  • Emin Yilmaz, Şahin Demirci, Eda Keskin Uslu
    2022 Volume 71 Issue 2 Pages 187-199
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS

    This study aimed to prepare and evaluate ground red pepper and turmeric added virgin olive oil (VOO) oleogels with whale spermaceti wax (WSW) as organogelator. The concentration of WSW was 8 wt%, and each spice was added at 1 overall wt%. Prepared oleogels were analyzed for main physico-chemical, structural, thermal, rheological properties. Further, aromatics volatile compositions, sensory descriptive analysis and consumer tests were completed. Results indicated that the new oleogels were quite spreadable preparates with acceptable quality indices. The oleogels included β type polymorphs, and showed up to 38℃ of peak melting temperatures. Rheological measurements proved true gel structure stable within applicable frequencies and above 38°C surrounding temperatures. The oleogels were thermo-reversible, and their gel state was recoverable after high shear. Around 25 different aromatic volatile compounds were identified in the two oleogels, most shown to be originating from the VOO, and the spices added. The panel defined and scored the samples with 12 sensory descriptive (hardness, spreadability, liquefaction, sandiness, olive fruit, grassy, waxy, rancid, bitter, hay, cooling and mouth coating) terms. Sensory scores were mostly similar to each other and also within the ranges given in the literature for similar spreadable fat products. Consumer test identified the samples with liked scores (above 4 in 5-max point scale) for appearance, aroma, flavour and overall acceptability. In conclusion, ground spices enriched VOO oleogels with WSW were developed successively to offer consumers spreadable olive oil products to extent consumption patterns with special flavors and health benefits of the spices.

    graphical abstract Fullsize Image
    Download PDF (3423K)
  • Vanessa Oliveira Di-Sarli Peixoto, Laís de Oliveira Silva, Vanessa Nac ...
    2022 Volume 71 Issue 2 Pages 201-213
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Baru (Dipteryx alata) almond is an emerging nut from the Brazilian savannah, that presents unique flavor and an interesting specialty oil. In this study, we aimed at investigating the effects of pressure, temperature, type (alcohol and/or water), and concentration of polar cosolvent on the extraction yield and tocopherol contents of baru oil obtained by supercritical-CO2 extraction (SC-CO2); and to investigate the effect of temperature and pressure on phytosterol, phenolic, and volatile compounds’ profile in the oil when H2O was the cosolvent. Baru oil extracted with SC-CO2 using alcohol as a cosolvent showed a higher extraction yield (20.5-31.1%) than when using H2O (4.16-22.7%). However, when 0.3% H2O was used as cosolvent, baru oils presented the highest γ-tocopherol (107 and 43.7 mg/100 g) and total tocopherol (212 and 48.7 mg/100 g) contents, depending on the temperature and pressure used (50°C and 10 MPa or 70°C and 30 MPa, respectively). Consequently, the lowest pressure (10 MPa) and temperature (50°C) values resulted in baru oils with better γ/α-ratio, and the highest contents of β-sitosterol (107 mg/100 g) and phenolic compounds (166 mg/100 g). However, the highest pressure (30 MPa) and temperature (70°C) values improved the volatile profile of oils. Therefore, although alcohol as a cosolvent improved oil yield, small amounts of H2O provided a value-added baru oil with either high content of bioactive compounds or with a distinctive volatile profile by tuning temperature and pressure used during SC-CO2 extraction.

    graphical abstract Fullsize Image
    Download PDF (740K)
Detergents, Surfactants, Interface and Colloid
  • Akio Ohta, Yuka Tauchi, Faisal Hossain, Yuta Sawada, Hitoshi Asakawa, ...
    2022 Volume 71 Issue 2 Pages 215-222
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS

    The antioxidant (AOX) activities of alanyl tyrosine dipeptide-type surfactants with several chain lengths were investigated. The critical micelle concentration decreased exponentially with the carbon number of the hydrophobic chain of the surfactant. The antioxidative property was investigated using the 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS) assay and the oxygen radical absorbance capacity (ORAC) assay. The AOX activity was found to be strongly dependent on the chain length in the monomer solution. Therefore, an increase in the molecular size negatively influenced the AOX ability of the tyrosine residue. However, it was almost independent of the chain length of the surfactant in the micellar solution. The micelle particles acted as a catalyst for the reduction of the radicals in the ORAC assay.

    graphical abstract Fullsize Image
    Download PDF (511K)
  • Ryo Ishiguro, Keiichi Kameyama
    2022 Volume 71 Issue 2 Pages 223-233
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    In the last few decades, the preparation of solid-supported lipid bilayers by immersing a solid substrate in an aqueous solution where the lipid is dissolved with the aid of a surfactant, followed by dilution of the solution, has been reported. In this study, we attempted to interpret the evolution of supported surfactant/lipid assemblies towards the supported lipid bilayer in terms of a phase equilibrium between the supported assembly phase and its ambient solution system consisting of the dispersed surfactant/lipid assembly phase and the bulk solution phase comprising monomeric surfactant and lipid. We characterized the supported assembly formed on hydrophilized Ge or mica substrates in equilibrium with aqueous solutions containing various concentrations of the nonionic surfactant, n-octyl-β-D-glucopyranoside (OG) and the amphoteric phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), using interaction-force-profile measurements by atomic force microscopy (AFM), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). We also investigated the ambient solution system using equilibrium dialysis to obtain the partition equilibrium profile of OG between the bulk solution and dispersed assembly phases in the micellar or vesicular states. These studies indicate that the properties of the supported assembly depend on the composition of the dispersed assembly and concentration of monomerically dissolved OG. Further, a type of micellar-bilayer state transition occurs in the supported assembly, roughly synchronized with that in the dispersed assembly.

    graphical abstract Fullsize Image
    Download PDF (841K)
  • Ryo Ishiguro, Keiichi Kameyama, Tetsuro Fujisawa
    2022 Volume 71 Issue 2 Pages 235-246
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    In the preceding paper, we investigated a mixed assembly composed of a nonionic surfactant, n-octyl-β-D-glucopyranoside (OG), and an amphoteric lipid, 1,2-dioleolyl-sn-glycero-3-phosphocholine (DOPC), formed on hydrophilized solid substrates immersed in aqueous solutions containing OG and DOPC. The experimental data could be interpreted in terms of the phase equilibrium; thus, the partition equilibrium profile of OG between the bulk solution phase and the supported assembly phase was obtained, as well as that between the bulk solution and the dispersed assembly. The partition equilibrium profiles suggested that micellar-bilayer state transitions occur both in the supported assembly and in the dispersed one in a roughly synchronized manner, even though there are significant discrepancies between them. In this paper, we propose a simple thermodynamic model for the micellar-bilayer transition of the dispersed and supported assembly of OG and DOPC, assuming that the micellar and bilayer states are also pseudo-phases distinct from each other. Using this model, we analyzed these partition equilibrium profiles and concluded that the transition in the supported assembly should mainly be attributed to the transition in the dispersed assembly, which is partly modified by the interaction energy between the supported assembly and the substrate.

    graphical abstract Fullsize Image
    Download PDF (625K)
Biochemistry and Biotechnology
  • Yunhua Wu, Dongmei Gan, Xuefeng Leng, Wenwu He, Xiuqiong Zhang, Chong ...
    2022 Volume 71 Issue 2 Pages 247-255
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS

    Disorganization and breakdown of extracellular matrix proteins like fibronectin, collagen, and elastin are key characteristics of skin aging due to the increased activation of important proteolytic enzymes like elastases and collagenase enzymes. Also, inhibition of their enzymatic activities by natural molecules might be a promising factor to prevent extrinsic skin aging. All chemicals were obtained from Sigma-Aldrich unless otherwise stated. The assay employed was based on spectrophotometric methods reported in the literature. The collagenase and elastase inhibition assays of some phenolic compounds were performed according to the previous studies. These compounds showed excellent to good inhibitory activities of vulpinic acid against studied these enzymes with IC50 values of 195.36 µM for collagenase and 25.24 µM for elastase. The molecular docking calculations were conducted to investigate the chemical and biological activity of vulpinic acid and usnic acid against collagenase and elastase. The results indicated that these two compounds can interact with the essential residues of the enzymes and affect their activities. The calculations of binding free energies were also performed to obtain more details about the characteristics and free energies of the ligand-enzyme complexes. Additionally, both compounds exhibited the most potent inhibition in the three lung cancer cells, with an IC50 value of 21-68 µM, indicating that vulpinic acid is more potent than Doxorubicin, which exhibited an IC50 value of 21-29 µM.

    graphical abstract Fullsize Image
    Download PDF (2010K)
  • Mohammad Shahzad Tufail, Iram Liaqat, Saiqa Andleeb, Sajida Naseem, Ur ...
    2022 Volume 71 Issue 2 Pages 257-265
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS
    Supplementary material

    Biogenic synthesis of silver nanoparticles (AgNPs) is more eco-friendly and cost-effective approach as compared to the conventional chemical synthesis. Biologically synthesized AgNPs have been proved as therapeutically effective and valuable compounds. In this study, the four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the biogenic synthesis of AgNPs. Agar well diffusion assay revealed to determine the antibacterial activity of all biogenically synthesized AGNPs showed that P. aeruginosa AgNPs possessed significantly high (p < 0.05) antibacterial potential against all tested isolates. The one-way ANOVA test showed that that P. aeruginosa AgNPs showed significantly (p < 0.05) larger zones of inhibition (ZOI: 19 to 22 mm) compared to the positive control (rifampicin: 50 µg/mL) while no ZOI was observed against negative control (Dimethyl sulfoxide: DMSO). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) concentration against four test strains also showed that among all biogenically synthesized NPs, P. aeruginosa AgNPs showed effective MIC (3.3-3.6 µg/mL) and MBC (4.3-4.6 µg/mL). Hence, P. aeruginosa AGNPs were characterized using visual UV vis-spectroscopy, X-ray diffractometer (XRD), fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The formation of peak around 430 nm indicated the formation of AgNPs while the FTIR confirmed the involvement of biological molecules in the formation of nanoparticles (NPs). SEM revealed that the NPs were of approximately 40 nm. Overall, this study suggested that the biogenically synthesized nanoparticles could be utilized as effective antimicrobial agents for effective disease control.

    graphical abstract Fullsize Image
    Download PDF (1172K)
  • Yanzhen Li, Ruhuan Cheng, Shaojing Zou, Yun Zhang, Saad H. Alotaibi, L ...
    2022 Volume 71 Issue 2 Pages 267-276
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS

    In this study, it is recorded the inhibition effect of Thalassiolin B on aldose reductase, alpha-glucosidase and alpha-amylase enzymes. In the next step, the molecular docking method was used to compare the biological activities of the Thalassiolin B molecule against enzymes formed from the assembly of proteins. In these calculations, the enzymes used are Aldose reductase, Alpha-Amylase, and Alpha-Glucosidase, respectively. After the docking method, ADME/T analysis of Thalassiolin B molecule was performed to be used as a drug in the pharmaceutical industry. In the MTT assay, the anti-human colon cancer properties of Thalassiolin B against EB, LS1034, and SW480 cell lines were investigated. The cell viability of Thalassiolin B was very low against human colon cancer cell lines without any cytotoxicity on the human normal (HUVEC) cell line. The IC50 of the Thalassiolin B against EB, LS1034, and SW480 were 483, 252, and 236 µg/mL, respectively. Thereby, the best cytotoxicity results and anti-human colon cancer potentials of our Thalassiolin B were observed in the case of the SW480 cell line. Maybe the anti-human colon cancer properties of Thalassiolin B are related to their antioxidant effects.

    graphical abstract Fullsize Image
    Download PDF (2939K)
  • Mingsheng Chen, Haikang Zhao, Yingying Cheng, Linlin Wang, Saad H. Alo ...
    2022 Volume 71 Issue 2 Pages 277-288
    Published: 2022
    Released on J-STAGE: February 03, 2022
    JOURNAL OPEN ACCESS

    In this study, the carcinogenic potential of Neobavaisoflavone as a natural antioxidant compound and the inhibitory profiles of acetylcholinesterase and butyrylcholinesterase were investigated by molecular modeling and spin density distribution studies. To evaluate the antioxidant properties of neobavaisoflavone, DPPH test was performed in the presence of butyl hydroxytoluene as a control. Neobavaisoflavone cell viability was low compared to normal human glioma cancer cell lines, namely LN-229, U-87 and A-172 cell lines, without any effect of cytotoxicity on normal cell line. Neobavaisoflavone inhibited half of DPPH at 125 μg/mL. The best effects of Neobavaisoflavone antihypertensive glioma against the above cell lines were in the LN-229 cell line. In addition, the significant anti-cancer potential of human glioma Neobavaisoflavone against the popular human glioma cancer cell lines is related in this study. IC50 values were calculated by Neobavaisoflavone diagrams, 63.87 nM for AChE and 112.98 nM for BuChE, % Activity- [Inhibitor]. According to the above results, Neobavaisoflavone can be used to treat a variety of human glioma cancers in humans. In addition, molecular modeling calculations were performed to compare the biochemical activities of the Neobavaisoflavone molecule with enzymes. After molecular insertion calculations, ADME/T analysis was performed to investigate the properties of the neobavaisoflavone molecule, which will be used as a drug in the future. Then, different parameters for the antioxidant activity of the neobavaisoflavone molecule were calculated.

    graphical abstract Fullsize Image
    Download PDF (2425K)
  • Shiguo Tang, Chao Fang, Yuting Liu, Lihua Tang, Yuanyi Xu
    2022 Volume 71 Issue 2 Pages 289-300
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS

    Obesity is occurring due to continue taken high fat diet; this is the fast-growing problem reaching epidemic proportion globally. Ursolic acid altered the abnormal glucose metabolism in diabetic rats. In this experimental protocol, we examine ursolic acid (UA) anti-obesity effect against streptozotocin (STZ) and high-fat diet-induced obesity in rats. Orally administered the ursolic acid (2.5, 5 and 10 mg/kg) dose to the hyperglycemic rats for 8 weeks and estimated the blood glucose level at different time intervals. Biochemical, hepatic, lipid, renal and antioxidant parameters were estimated. Traf-4, Mapk-8, Traf-6 and genes such as Ins-1, ngn-3 and Pdx-1 mRNA expression were estimated using qRT-PCR to scrutinize the molecular mechanism in MAPK downstream JNK cascade and insulin pathway signalling pathways. Ursolic acid significantly (p<0.001) down-regulated the blood glucose level at dose dependent manner. Its also reduced the plasma insulin level, non-essential fatty acid and increased the level of adiponectin as compared to obese control group rats. Ursolic acid treated group rats reduced the level of total cholesterol and triglycerides. Ursolic-acid-treated rats have been shown to decrease oxidative stress in pancreatic tissue by restoring the free radical effect of scavenging, suppress the Traf-6, Mapk-8 and Traf-4 mRNA expression, enhance the expression of Pdx-1, Ins-1 and Ngn-3 and ensure the regeneration of pancreas β cells and therefore pancreas insulin. The current result suggested the anti-obese effect of ursolic acid against high fat diet (HFD) induced obese rats via alteration of insulin and JNK signaling pathway.

    graphical abstract Fullsize Image
    Download PDF (1097K)
Nutrition and Health Function
  • Bo Qiao, Xiaoya Li, Tao Zheng, Zhoujin Tan
    2022 Volume 71 Issue 2 Pages 301-310
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS

    The intake of moderate oils and fats is necessary to maintain the body’s energy balance, and the fatty acid composition of different oils and fats varies in their nutrition and function. The study aimed to investigate the effects of lard and vegetable blend oil on gut microbiota, intestinal enzyme activities, and blood routine. Kunming mice were assigned to the three groups: (1) Control group (CK) was gavage administration with distilled water, (2) Plant oil group (ZWY) was gavage administration with edible vegetable blend oil, (3) Lard group (DWY) was gavage administration with lard. After 42 days, microbiological, digestive enzymes, and blood routine were performed. Compared with the CK group, Escherichia coli, Lactobacilli, and Bifidobacteria were significantly decreased (p < 0.05), the activities of protease, cellulase, amylase, and xylanase were markedly reduced (p < 0.05), the hemoglobin was significantly increased (p < 0.05) in the ZWY group and DWY groups, and the hematocrit was increased in the ZWY group (p < 0.05), while other routine blood indices were increased (p > 0.05). Compared to the ZWY group, the activity of cellulase and amylase were significantly increased (p < 0.05), the intestinal microorganism and the routine blood indexes had no significant difference in the DWY group. Lard and vegetable blend oil diet affected the composition of the intestinal microorganisms, and the functions of digestive enzymes. Meanwhile, the levels of digestive enzymes may be correlated with the intestinal microbiota.

    graphical abstract Fullsize Image
    Download PDF (2302K)
General Subjects
  • Zaid H. Mahmoud, Reem Adham AL-Bayati, Anees A. Khadom
    2022 Volume 71 Issue 2 Pages 311-319
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: January 14, 2022
    JOURNAL OPEN ACCESS

    Pure and varying weigh ratio of Sm2O3-TiO2 modified polyaniline nanocomposite has been successfully synthesized using in situ polymerization of aniline solution with Sm2O3-TiO2 binary oxide. The nanocomposite have been characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), X-photoelectron microscopy (XPS), Field emission-scanning electron microscope (FE-SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA) and LCR meter. The XRD results show synthesis anatase TiO2 phase with tetragonal structure and (monoclinic and cubic) mixture structure of Sm2O3. The FE-SEM and TEM measurements appear preparing spherical nanoparticles that covered fiber morphology of polyaniline and successfully in situ polymerization process. The TGA measurements are obtain high thermal stability for polyaniline after incorporation by Sm2O3-TiO2 binary oxide nanoparticles. LCR measurement is obtained that the DC conductivity, dielectric constant and dielectric loss of nanocomposite is larger than pure polyaniline and the electric properties increase with increasing the concentration of nanoparticles.

    graphical abstract Fullsize Image
    Download PDF (3114K)
  • Kurumi Ikawa, Amiko Aizawa, Taisuke Banno, Miyuki Fujishiro, Shoichi Y ...
    2022 Volume 71 Issue 2 Pages 321-331
    Published: 2022
    Released on J-STAGE: February 03, 2022
    Advance online publication: December 28, 2021
    JOURNAL OPEN ACCESS

    A new method was developed for the in vitro sun protection factor (SPF) evaluation of sunscreen samples. A new type of substrate, a hydroxyalkyl cellulose-coated plate, was also prepared specifically for hydrophilic samples. This new substrate was required because hydrophilic samples would be unlikely to wet the surface of the standard cosmetic PMMA UV evaluation plate. A super-hydrophilic quartz plate was prepared by corona-discharge treatment before an aqueous solution of hydroxyalkyl cellulose was spread on it. A flat and uniform hydroxyalkyl cellulose film was subsequently formed through the evaporation of water. Special care was taken to inhibit the generation of spatial non-uniformity. Six hydrophilic sunscreen samples with in vivo SPF values of 56, 55, 52, 25, 15, and 4, were then applied to the prepared hydroxyalkyl cellulose-coated plate, as well as a super-hydrophilic quartz plate and a flat hydrophobic PMMA plate. The thicknesses of the applied layers were determined using a wheel-shaped wet film thickness gauge immediately after the application, and UV transmission was measured using an SPF analyzer. The value of in vitro SPF was calculated from the UV absorbance and the thickness of the layer. For two out of the six samples, PMMA plate could not be available, as the samples were unable to wet the PMMA surface. Relatively small differences were observed between the in vitro SPF values when the super-hydrophilic and hydroxyalkyl cellulose-coated plates were used. Samples exhibiting higher in vivo SPF were also associated with higher in vitro SPF values, although a linear relationship was not observed. In contrast to the super-hydrophilic plate whose half-life of the super-hydrophilicity is only approximately five days, the hydrophilicity of the hydroxyalkyl cellulose-coated plate scarcely varied during six months of storage. Finally, a simplified evaluation method was also proposed. The validity of the method was verified through a ring test where three researchers employed this method in different laboratories at three independent organizations.

    graphical abstract Fullsize Image
    Download PDF (1625K)
feedback
Top