日本作物学会紀事
Online ISSN : 1349-0990
Print ISSN : 0011-1848
ISSN-L : 0011-1848
2 巻, 2 号
選択された号の論文の11件中1~11を表示しています
  • 近藤 萬太郎, 岡村 保
    1930 年 2 巻 2 号 p. 73-89
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
    Der Querriss des Reiskornes vermindert den Wert des Reises sehr, weil bei dem Polieren der quergerissene Reis sehr leicht entzweibricht. Die Ursache des Querrisses bezw. des Brechens des Reiskornes durfte eine vielfache sein. Bisher hat man im allgemeinen als die Ursache, , rasche Trocknung", , starke Trocknung", , Trocknung in der Hitze" usw. angegeben. Es wurde bisher jetzt gar nicht darauf aufmerksam gemacht, dass die Feuchtigkeitszunahme des Kornes nach der Trocknung viel mehr unmittelbare Ursache des Querreissens des Kornes ist als die Trocknung selbst. Die Verfasser haben darum die Beziehungen zwischen dem Querrisse und der Feuchtigkeits zunahme des Kornes einer Untersuchung unterzogen. Die Ergebnisse sind folgende:- 1. Bei der Trocknung der Reisgarbe im Freien ist die Anzahl der quergerissenen Korner in dem ausseren Teile der Garbe grosser als in dem inneren Teile, bei der kleinen Garbe grosser als bei der grosseren Garbe. Es zeigt sich, dass der Querriss leichter an der Stelle entsteht, wo Trocknung und zugleich Feuchtigkeitszunahme leichter statt findet. 2. Wenn die nach der Ernte gut getroknete Reispflanze zwei Stunden lang dem Regen ausgesetzt wird, bildet sich eine grosse Anzahl quergerissener Korner. In Verlauf der Zeit steight die Anzahl der quergerissenen Korner an, innerhalb einer Stunde nach dem Regen ist die Anzahl solcher Korner schon verhaltnismassig gross. 3. Je langer die gecrnteten Reispflanzen dem Regen ausgesetzt werden, um so grosser ist die Menge derartiger quergerissenen Korner. 4. Wenn man die Reispflanze nach dem Regen bald schnell trocknet, lasst sich die Entstehung der quergerissenen Korner nach dem Regen verhindern. 5. Wenn die zwei Stunden lang im Wasser eingeweichten Korner bei schneller Verdunstang gut getrocknet werden, wird die weitere Bildung quergerissener Korner wahrend der Zeitdauer der Trocknung verhindert; sind die Umstande aber so dass der Vorgang der Verdunstung und damit die Troknung der Korner sehr langsam vor sich geht wird, so bildet sich eine grosse Anzahl quergerissenen Korner. 6. Wenn die gut getrockneten Reiskorner aus der Luft Feuchtigkeit aufnehmen, entsteht cine grosse Menge der quergerissenen Korner. Wenn aber die Korner nach der Trocknung luftdicht aufbewahrt werden, ist ihre Entst hungen sehr geringfugig. 7. Proportional mit der Intensitat der Trocknung der Reiskorner und ebenso mit dem Feuchtigkeitsgehalt der Luft nimmt sowohl die Anzahl der quergerissenen Korner sowie die Schnelligkeit ihrer Bildung zu. Die Feuchtigkeitszunahme der Korner ist eben schneller und grosser. Wenn gut getrocknete Korner feuchter Luft ausgesetzt werden, bildet sich schnell eine grosse Anzahl quergerissener Korner. 8.Es ist ganz ausser Zweifel, dass die Feuchtigkeitszunahme der getrockneten Korner eine bedeutende Ursache der quergerissenen Reiskorner ist. Infolgedessen ist es sehr wichtig die getrockneten Korner schnell luftdicht aufzubewahren um die Feuchtigkeitszunahme zu verhindern.
  • [コンドウ] 萬太郎, 岡村 保
    1930 年 2 巻 2 号 p. 90-95
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
  • 坂口 勇
    1930 年 2 巻 2 号 p. 96-103
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
  • 小坂 博
    1930 年 2 巻 2 号 p. 104-109
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
  • 松田 秀雄
    1930 年 2 巻 2 号 p. 110-119
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
    1. The material used in the present study is Sutton's New Blue Bedding (2n=14) and Sutton's Leviathan (2n=28). Some branches with young buds were put in flasks filled with water and kept in ovens at 40°C, 42°C, 45°C and 47°C respectively. After differing lengths of time buds were examined in Belling's acetocarmine. Irregularities were observed in regard to both karyokinesis and cytokinesis; only the latter will be reported here. 2. At higher temperature tetrads formation proceeds in a manner different from the normal furrowing process (Fig.2-Fig.3). A narrow hyaline area appears at the middle of cells which gradually becomes clearer and bisects the cytoplasm (Fig.5). A wall is then formed around each daughter cell (Fig.6). The sister cells thus formed remain sticking to each other by the division plane and often fail to separate. The secondary division sometimes takes place in one or each of the daughter cells (Fig.8). As a result there are formed three or four daughter cells, all of which also remain sticking together very often, although a slight indication of separation is sometimes seen between the sister cells. Some pollen mother cells, on the other hand, are divided simultaneously into four parts which also remain stuck together (fig.9). Possibly the giant pollen grains are. derived from those cases in which sticking cells have fused together and have been enclosed within one and the same wall (Fig.10). 3. The fusion of cells can occur at later stages among microspores (Fig.11-Fig.17). When cells more than four in number or corresponding to more than four fuse together a super giant pollen grain larger than the tetraploid grain reported in my previous paper must naturally result (Fig.14). This fact also clearly accounts for the irregular shape of super giant pollen grains. 4. Fusion also takes place at earlier stages while the meiosis is still proceeding (Fig.19-Fig21). This must result in giant pollen grains or if any cytokinesis fails to occur, a super giant pollen grain. This sort of fusion is as rarely observed in the heated material as in the greenhouse material. Abnormal temperature (at least high temperature), therefore, may not be the important factor for its occurrence 5. A uninucleate interkinesis is found with at least fourty nine chromosomes (Fig.18). Cell dimension in this case is normal. This has probably been caused by cytomixis occurring at a certain stage of meiosis and has no relation with the formation of giant grains. 6. In the giant pollen grain formed by means of cell fusion the nuclei possibly do not fuse into one, so that in fertilisation only one haploid nucleus will join the egg nucleus. This, to some extents, accounts for the fact we reported at the previous meeting, namely that artificial pollination exclusively with giant pollen grains resulted only F1 progenies with a diploid number of chromosomes, although we have some reason to believe that the chromosome elimination must take place at a certain stage during the progress from pollen division to fertilisation, or much later.
  • 安田 貞雄
    1930 年 2 巻 2 号 p. 122-126
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
    In the course of the writer's experiments with self-incompatible lines of Petunia violacea, it was noticed that the germination of pollen-grains and the growth of pollen-tubes were inhibited by the stigma-secretion, or the tissue-juice of styles, or both. Although it is very interesting to know the exact time when these substances are produced, yet it can not be definitely stated as yet. So far as the writer's experiments go, it may be conjectured that they may be produced shortly before or after the opening of flowers. So, the pollinations between the pistils of the flower-buds of self-incompatible individuals of Petunia violacea and the pollens of open flowers of the same plant was made as well as between the pistils and pollens of open flowers of the same individual. The result of such experiments were that pistils of the flower-buds were easily fertilized, but those of open flowers were utter failure in their fertilization. The seeds thus ontained germinated fairly well. The experiments and their results above noticed show the posibility of obtaining pure-line seeds of self-incompatible plants, at least in petunia violacea, by means of the pollination method above stated, i. e., by carrying on the pollination between the pistils of flower-buds and the pollens of open flowers.
  • 井上 重陽
    1930 年 2 巻 2 号 p. 127-133
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
    1. The material used in this investigation is the pollen mother cells of Linum usitatissimum, L., Linum perenne, L. and Linum grandiflorum, L. which were fixed in Bouin's solution. Sections were cut at seven micra and stained in iron-alum-haematoxylin. 2. During the second telophase of the meiotic mitosis in Linum a movement of chromatin occurs from the chromosomes along the fine threads, which connect them with each other, to form an irregular mass of chromatin, and finally all the chromatin concentrates in one place to produce a new nucleolus. And as a result of this movement of chromatin, some of the chromosomes lose all their chromatin and disappear completely, while others retain part of the chromatin and remain as small granules in the nucleus.
  • 深城 貞義
    1930 年 2 巻 2 号 p. 134-138
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
  • 小野寺 二郎, 高崎 [タツ]藏
    1930 年 2 巻 2 号 p. 142-152
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
  • 野口 彌吉
    1930 年 2 巻 2 号 p. 153-160_1
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
  • 植田 宰輔
    1930 年 2 巻 2 号 p. 161-170
    発行日: 1930/07/25
    公開日: 2008/02/14
    ジャーナル フリー
feedback
Top