地理学評論 Ser. A
Online ISSN : 2185-1735
Print ISSN : 0016-7444
ISSN-L : 0016-7444
62 巻, 4 号
選択された号の論文の5件中1~5を表示しています
  • 矢野 桂司
    1989 年 62 巻 4 号 p. 269-288
    発行日: 1989/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    従来,資料の制約上,入手不可能であった東京大都市圏の年齢階級別市区間人口移動データを,公表された資料を最大限に利用するエントロピー最大化法を用いて推計した.そして,そのデータに対して3元データの要約にすぐれた3相因子分析法を適用することによって,錯綜した東京大都市圏内部の人口移動パターンの基本構造を明らかにしようとした.
    その結果,ライフ・ステージの変化に対応すると考えられる東京大都市圏の人口移動は,年齢階級に関して,0~14歳の幼・少年層の子供を伴う30歳以上の壮年層に代表される年齢層と,20歳代の若・青年層に代表される年齢層に大別され,それぞれ異なる移動パターンを呈していることが判明した.前者の移動は区部縁辺地域から隣接する周辺近郊地域への移動で,それらは都心部から放射状に広がる鉄道路線網に規定されたセクター状の移動パターンを呈し,後者の移動は区部内部,とくに山の手地域で完結する相互移動パターンを呈していることが明らかとなった.
  • 中・南九州を事例として
    友澤 和夫
    1989 年 62 巻 4 号 p. 289-310
    発行日: 1989/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    わが国の「周辺地域」の工業化は,空間的に分離した機能配置が可能な電気機器工業と衣服工業が急成長し,低貰金非熟練労働力を求めてその生産機能が進出したことにより生じたと考えられる.周辺地域の1つである中・南九州では,半導体工業,衣服工業の立地が活発に行なわれたが,進出工場は生産部門に特化し,また域外支配を強く被っている.それは,地域内の企業関連が弱いこと,および工場の労働力構造にあらわれている.半導体工業においては,大卒の技術者を地域内に留める雇用形態ではなく,高卒者が主体の労働力構造である.それらの採用は好不況により大きく変動し,雇用面において不安定性が強い.衣服工業においては,組織化されていない低賃金主婦労働力が主体であり,地域労働市場におけるそれらの増加は,周辺的な性格をますます強化させている.
  • 榊原 保志
    1989 年 62 巻 4 号 p. 311-319
    発行日: 1989/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    Temperatures along the Tokyu Toyoko Railway Line between Shibuya and Yokohama recorded atevery 15-second intervals by a thermistor sensor placed between the doors on the side of the first car of a train traveling the 25km of the line. One of the features of the distributions was a rise in temperature during the train's stops at stations. To identify the cause of that phenomenon, the rises in temperature were compared for trains passing through and those stopping at the same stations. The data show that the rise in temperature for trains stopping is as twice large as for those passing through. In the case of moving trains, errors in reading the thermometer caused by time lag should betaken into account, calculated according to the following conditions:
    The temperature around the platform changed in steps as model distributions. A typical station on the Toyoko Railway Line was chosen as a model station, Velocity distribution was that at the head of a train passing through the model station.
    After the errors were accounted for, the temperature rise for slowing became the same as that for stopping. As the time lag of the thermistor is small under this condition, the rise in temperature at the time of the tram's stopping at the station may have other momentary causes like the heat created by brake friction. In reality the temperature is not judged to change in steps owing to the advection currents of air. The temperature measured by a moving thermistor is not that at the point of observation but a spatial moving average temperature. The data excluding those after the stopping of a train and those recorded in 14sec after the train starts are useful. If the time interval for routine observations is within 8sec or less, the heat islands created by around urban stations can be observed.
  • 水野 恵司
    1989 年 62 巻 4 号 p. 320-331
    発行日: 1989/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    Many Japanese workers have recognized that landslides can be classified into two types; in type (1) the speed is higher, the duration is shorter and the movement rarely reactivates; in type (2) the speed is lover, the duration is longer and the movement continues intermittently for a long period. The former is named here A-type and the latter, B-type, Previous classifications Which were based on experience are qualitative and descriptive. Therefore, it is necessary to quantitatively classify these two types.
    The maximum speed and the duration of movements recorded at 120 landslides on natural slope in Japan were quantitatively investigated on the basis of the existing literature. The movement of the A-type landslide is divided into (1) pre-failure movement, (2) main movement and (3) post-failure movement., as shown in Fig. 1 as an example. The distance and speed of the pro failure andpost-failure movements are so small as to be negligible, compared with those of the main movement. Therefore, the speed and the duration for landslides of this type are estimated from the data on the main movement. For the B-type landslide, active and inactive periods alternately repeat (Fig. 2). The duration and the maximum speed are estimated from one active period.
    The histograms of duration and maximum speed constructed using the existing data are shown in Fig. 3. The duration histogram (Fig. 3-A) has a hi-modal distribution, which can be divided into two groups at the bottom of trough of the histogram, i.e., 101.5 (_??_32) hours. Dual-peak distribution is found in the speed histogram (Fig. 3-B); a trough between the two peaks is located at 10-2 to 10-1m/min. Fig. 3-B also shows that (1) landslides with a duration of less than 32 hours have a higher speed than 10-2m/min, and (2) the landslides with a duration of more than 32 hours have a lower speed than 10-1 m/min.
    The above discussion leads to the following classification. A landslide having higher speed than 10-1.5m/min and shorter duration than 32 hours is named the “rapid-type”, and one having lover speed than 10-1.5m/min and longer duration than 32 hours is named the “slow-type”
  • 1989 年 62 巻 4 号 p. 332-333,337
    発行日: 1989/04/01
    公開日: 2008/12/25
    ジャーナル フリー
feedback
Top