植物学雑誌
Online ISSN : 2185-3835
Print ISSN : 0006-808X
ISSN-L : 0006-808X
65 巻 , 767-768 号
選択された号の論文の9件中1~9を表示しています
  • 国谷 雄三郎
    1952 年 65 巻 767-768 号 p. 93-101
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
  • 平岡 俊佑
    1952 年 65 巻 767-768 号 p. 102-108
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
  • 初島 住彦
    1952 年 65 巻 767-768 号 p. 109-111
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
  • 越智 春美
    1952 年 65 巻 767-768 号 p. 112-118
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
    1. The adaptability of mosses to their different habitats was ascertained by researching into their minimum hydrability within which mosses are able to survive, and by making inquiries the relationship between it and water economy in mosses.
    2. On the relationship among maximum hydration (M), hydrability of air-dried samples (A), minimum hydrability (m) and the hydrability of “dead-and-air-dried” samples (a) of xerophilous (X), of merophilous (Me) and of hygrophilous (H) mosses, the following formulations seem to be given: M, X<M, Me<M, H; m, X_??_m, Me<m, H; A, X_??_m, X_??_a, X; A, Me_??_m, Me>a, Me; and A, H(dead)<m, H.
    3. It seems that xerophilous mosses do not easily reduce their water below the quantity of their own minimum hydrability when they are air-dried, that they are capable of imbibing vapour in the air which is not saturated with vapour bait is low in relative humidity, and that they are capable of maintaining water above their own minimum hydrability in the air. But it seems that hygrophilous ones have not such peculiarities. These are probably caused mainly by the peculiarities of their protoplast.
    4. It seems that maximum hydration and minimun hydrability being low in xerophilous mosses is favourable for their activities even in relatively dry conditions; on the other hand, it seems that hygrophilous ones, whose both the hydration and hydrability are high, are capable of being active only in the condition of environments having fairly much water in them.
    5. “Dead-and-air-dried” samples of xerophilous mosses have the water-holding nature being nearly equal to that of air-dried (living) ones; this behavior seems to be important especially in their ecology.
  • 堀 武義
    1952 年 65 巻 767-768 号 p. 119-122
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
  • 升本 修三
    1952 年 65 巻 767-768 号 p. 123-127
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
  • 小林 義雄, 福島 博
    1952 年 65 巻 767-768 号 p. 128-136
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
    1. During the microbiological investigation of the Oze-Moor which is situated in the northern part of Nikko National Park, the writers found the socalled “Red and Green Snow” on the snow left unmelted of several locality about 1500-1800 meters above sea-level in May-June 1951. They were also given the samples of red snow which were collected on the mountain ridge (ca. 2000m.) of Mt. Shirouma in May 1951 and on the snow valley (ca. 2500m.) near Mt. Eboshi in August 1951. These were spreading over the snow surface as small irregular patches measuring from several centimeters to one meter in diameter.
    2. Cryophilous species determined from these samples are as follows. Fungi: Chionaster nivalis, Selenotila nivalis. Algae: Chlamidomonas nivalis, Chodatella brevispina, Scotiella nivalis, Raphidonema nivale, Raphidonema Tatrae. Japanese Chodatella brevispina seems to be the slight modification of the European type differring in its having thicker and longer spines (2.1-2.8μ long). As for the non-cryophilous fungal members, the yeast-like cells, Chytridiaceous zoosporangium, hyphae of Dematium, spores of Guepiniopsis, Prosthemium, Scolecosporium, Asterosporium and others may be mentioned, Furthermore, Mucor hiemalis (-), Penicillium sp., several species of bacteria were separated as pure culture.
    3. The main element of red snow is Chlamydomonas nivalis which was found in the stage of chlamydospores, some of them having gelatinous outer membrane.
    4. The main element of green snow is commonly Chodatella or rarely Chlamydomonas. This type of green snow seems to be different from European Raphidonema- Type and American Chlamydomonas-Type.
    5. Ph-range of green snow was 4.2-4.8 in half melting condition of materials.
    6. Red snow was found in such a place exposed to the direct rays of the sun as mountain ridge, snow valley or Fagus-forest. On the contrary, green snow was spreading in the dark places of coniferous forest.
    7. Chionaster nivalis is a kind of fungi and seems to pass the summer season in the stage of chlamydospores which are supposed to be formed by the conjugation of two cells.
    8. We are now studying the life history of Chlamydomonas nivalis, Chionaster nivalis and Selenotila nivalis, the latter two being not yet settled in their systematic position. The question how they live in summer season is left unsolved.
  • 岩波 洋造
    1952 年 65 巻 767-768 号 p. 137-144
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
    自家不和合性研究の一鐶として行った花粉管内原形質流動についての実験観察の報告である。 1) 花粉管内原形質の流動は生育の時期, 生育条件にょつて agitation 内外異方向の運動, 逆噴水動, rotation 及びこれらの移行型と各種の表現型をとつて一定しない。
    2) 花粉管内原形質の流速を測定した。(表1, 2) 管の伸長初期, 管の先端近くにおいて流動はおそい。最高秒速てつぽうゆりで 9.51μ であった (36°C)。
    3) 花粉管内原形質は人工的に分割しても各単独に rotation を行う。
    4) 花粉管が分枝した時, 原形質流動も分枝する。(Fig. 2の9)
    5) 正常伸長の花粉管の先端には粒子を含まない gel 状原形質塊が存在し (これを帽体と呼んだ), 帽体が失われると管の伸長は止る。然しながら原形質流動と帽体とは直接関係はない。(Fig. 7)
    6) 花粉管をガラス棒ではさむと原形質流動はその位置で2分するが, ガラス棒をもとにもどしてもよく伸長した花粉管では2分したまま流動はもとにもどらない。(概部原形質が gel 化したものと解した。)(Fig. 6)
    7) 花粉管内原形質の状態を Fig. 8 に示した。
    8) 花粉管内原形質を plasmolyse により細分した時, 時に流動方向を換えて管の周に沿つて流れるものが現れたが, 時間と共に又管の軸に沿つて流動した (Fig. 2の5)
    9) de-plasmolyse 法により原形質を管外にとり出した時, なおも種々な流動運動を行った。
  • 木村 劼二
    1952 年 65 巻 767-768 号 p. 145-148
    発行日: 1952年
    公開日: 2006/12/05
    ジャーナル フリー
feedback
Top