Despite being proposed since more than 50 years ago, COordinate Rotation DIgital Computer (CORDIC) is still one of the most effective algorithms for elementary function calculation so far. Original CORDIC, however, suffers high latency due to its nature of unvarying number of rotations. As a result, a low-latency hybrid adaptive (HA) CORDIC is proposed in this paper. Firstly, adaptive angle selection decreases total iterations up to 50% with respect to higher accuracy of results. Secondly, hybrid architecture including fixed-point input and floating-point output reduces the total hardware utilization and enhances the dynamic range of final results. Lastly, parallel and pipeline processing together with resource sharing technique allow the design to operate fully at 175.7 MHz with low resource consumption — 1,139 LUTs and 489 registers.
View full abstract